Some classic congruences (Fermat, Wilson, Lagrange, and some others ... ), and the Gauss- Wilson theorem 

 

 

 

Fermat's 'little' Theorem, and introducing a standard term: the Fermat quotient, q[p](a) 

 

 

An exercise concerning Sum(`/`(1, `*`(i)), i = 1 .. `+`(p, `-`(1))), and the half and quarter sums Sum(`/`(1, `*`(i)), i = 1 .. `+`(`*`(`/`(1, 2), `*`({`+`(p, `-`(1))})))) and Sum(`/`(1, `*`(i)), i = 1 .. `+`(`*`(`/`(1, 4), `*`({`+`(p, `-`(1))}))))  

 

 

Wilson's Theorem, and introducing another standard term: the Wilson quotient, w[p] 

 

 

Wilson's theorem went in two different directions, what one might call: 

 

 

 

 

 

 

The Lagrange path 

 

 

And now the Gauss path: 

 

 

The Gauss-Wilson theorem