
> >

(1.1)(1.1)

> >

> >

> >

Non-standard Jacobi primes to 10^14.mws

[1]

a = 11 (mod 12)

b = 0 (mod 12)

Procedures (now with HW (Hudson-Williams) included for faster computation of

New additions after Sat. 9th Nov. 2013: the much faster a_new, b_new, r_new and u_new

with(numtheory): ### needed for 'order'

phi(100);
40

01:

Pow := proc(n, p) local t, a; t := n: a := 0: while t mod p = 0 do t := t/p:
a := a+1: od: a; end:

02:

a_new := proc(p) local SOLN, s, a;

 SOLN := isolve(p = x^2 + 3*y^2):

 s := {op(op(1, [SOLN]))}:

 a := op(2, [op(op(1, s))]):

 if mods(a, 3) = -1 then a := a else a := -a fi:

 a; end:

03:

b_new := proc(p) local SOLN, s, b;

 SOLN := isolve(p = x^2 + 3*y^2):

 s := {op(op(1, [SOLN]))}:

 b := abs(op(2, [op(op(2, s))])):

 b; end:

04:

r_new := proc(p) local SOLN, s, a, b, r;

 SOLN := isolve(p = x^2 + 3*y^2):

> >

> >

> >

> >

 s := {op(op(1, [SOLN]))}:

 a := op(2, [op(op(1, s))]):

 if mods(a, 3) = -1 then a := a else a := -a fi:

 b := abs(op(2, [op(op(2, s))])):

 if b mod 3 = 0 then r := 2*a; elif mods(b, 3) = -1 then r := -(a + 3*b);
else r := -(a - 3*b);

 fi; r; end:

05:

u_new := proc(p) local SOLN, s, a, b, u;

 SOLN := isolve(p = x^2 + 3*y^2):

 s := {op(op(1, [SOLN]))}:

 a := op(2, [op(op(1, s))]):

 if mods(a, 3) = -1 then a := a else a := -a fi:

 b := abs(op(2, [op(op(2, s))])):

 if b mod 3 = 0 then u := 2*a; elif mods(b, 3) = -1 then u := -(a - 3*b);
else u := -(a + 3*b);

 fi; u; end:

Having p = 1 (mod 24) requires having both p = 1 (mod 3) and p = 1 (mod 8), and thus with with a and b
relatively prime and of opposite parity this (p = 1 (mod 24)) is achieved at 4 cases:

a = 1, 5, 7 or 11 (mod 12)

b = 0 (mod 4), i.e. b = 0, 4, 8 (mod 12)

if a mod 3 = 2 then a := the positive a ***

if a mod 3 = 1 then a := - the positive a

if b mod 3 = 0 then r := 2*a; ***

if b mod 3 = 2 then r := -(a + 3*b);

if b mod 3 = 1 then r := -(a - 3*b);

> >

(2.1)(2.1)

> >

> >

> >

(2.2)(2.2)

Here we began with:

a = 11 (= 11 mod 12) ending at took 43.04 hours. Two known Jacobi

print(``); N := 2^19: bound := 10^7; A := 10^14: print(``);

 for a from 11 by 12 to bound do ### so a = 2 (mod 3)

 for b from 12 by 12 to isqrt((A - a^2)/3) do ### so b = 0 (mod 3)

 if igcd(a, b) = 1 then

 p := a^2 + 3*b^2:

 ### r := 2*a; with a chosen to be POSITIVE; THUS

 r := 2*a: ### NO sign needed

 if r&^N mod p = 1 and isprime(p) then print(a, b, p, ifactor(order
(r_new(p), p))) fi fi od od;

Warning, computation interrupted
a; a-12;

116159
116147

Total time to was 29671 seconds, and then

Total extra time to was 4431 seconds

Total extra time to was 50892 seconds

Total extra time to was 67186 seconds

Total extra time to was 2852 seconds

The total run time to the end of the above is:

secs := 29671 + 4431 + 50792 + 67186 + 2852;

hrs := secs/3600.0;

> >

> >

(3.1)(3.1)

> >

(2.3)(2.3)

> >

The FINAL computation started at a = 588 935:

st := time[real](): N := 2^19: A := 10^14:

 for a from 588935 by 12 to 600000 do ### so a = 2
(mod 3)

 for b from 12 by 12 to isqrt((A - a^2)/3) do ### so b = 0 (mod
3)

 if igcd(a, b) = 1 then

 p := a^2 + 3*b^2:

 ### r := 2*a; with a chosen to be POSITIVE; THUS

 r := 2*a: ### NO sign needed

 if r&^N mod p = 1 and isprime(p) then print(a, b, p, ifactor(order
(r_new(p), p))) fi fi od od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 2852.697, `seconds.`
a; a-12;

600011
599999

A jump forward to a = 3 600 011 (= 11 mod 12) ending at took 307.9 hours. No Jacobi found

3600011 mod 12;
11

Total time to was 29887 seconds

Total time to was 77426 seconds

Total time to was 74582 seconds

Total time to was 95518 seconds

Total time to was 74403 seconds

Total time to was 82161seconds

> >

> >

(3.2)(3.2)

> >

Total time to was 51066 seconds

Total time to was 59753 seconds

Total time to was 83824 seconds

Total time to was 21247 seconds

Total time to was 96743 seconds

Total time to was 150920 seconds [a double run] [because we hadn't changed the starting
point]

Total time to was 72717 seconds

Total time to was 62699 seconds [10018 secs fewer]

Total time to FINAL was 75526 seconds

The total run time to end of the above is:

secs := 29887 + 77426 + 74582 + 95518 + 74403 + 82161 + 51066 + 59753 +
83824 + 21247

 + 96743 + 150920 + 72717 + 62699 + 75526;

hrs := secs/3600.0;

The FINAL computation started at :

st := time[real](): print(``);

 N := 2^19:

 bound := 10^7;

 A := 10^14:

print(``);

 for a from 9000011 by 12 to (bound-1) do ### so a = 2
(mod 3)

 for b from 12 by 12 to isqrt((A - a^2)/3) do ### so b = 0
(mod 3)

 if igcd(a, b) = 1 then

 p := a^2 + 3*b^2:

 ### r := 2*a; with a chosen to be POSITIVE; THUS

 r := 2*a: ### NO sign needed

(3.3)(3.3)

(4.1)(4.1)

> >

> >

> >

> >

> >

> >
(4.2)(4.2)

 if r&^N mod p = 1 and isprime(p) then print(a, b, p, ifactor(order
(r_new(p), p))) fi fi od od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 75526.780, `seconds.`
a; a-12;

10000007
9999995

Now we pulled back in blocks of 300 000 (= 0 mod 12):

First, the a-range from 3 300 011 (= 11 mod 12) to a = 3 599 999:

DONE a = 3 300 011 (= 11 mod 12), ending at (=) took 20.26 hours

3300011 mod 12;
11

3600011 - 12;
3599999

The computation to be undertaken started from a = and ends at a =

st := time[real](): N := 2^19: A := 10^14:

 for a from 3300011 by 12 to (3600011 - 12) do ### so a = 2
(mod 3)

 for b from 12 by 12 to isqrt((A - a^2)/3) do ### so b = 0
(mod 3)

 if igcd(a, b) = 1 then

 p := a^2 + 3*b^2:

 ### r := 2*a; with a chosen to be POSITIVE; THUS

(4.4)(4.4)

> >

> >

(4.3)(4.3)

> >

> >

> >

> >

(5.1)(5.1)

> >

(5.2)(5.2)

> >

 r := 2*a: ### NO sign needed

 if r&^N mod p = 1 and isprime(p) then print(``);

 print(a, b, p, ifactor(order(r_new(p), p))) fi fi od
od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 72937.555, `seconds.`
a; a-12;

3600011
3599999

secs := 72937:

hrs := secs/3600.0;

Next, the a-range from 3 000 011 (= 11 mod 12) to a = 3 300 007:

DONE a = 3 300 011 (= 11 mod 12), ending at (=) took 20.1 hours

3000011 mod 12;
11

3300011 - 12;
3299999

The computation to be undertaken started from a = and ends at a =

st := time[real](): N := 2^19: A := 10^14:

 for a from 3000011 by 12 to (3300011 - 12) do ### so a = 2
(mod 3)

 for b from 12 by 12 to isqrt((A - a^2)/3) do ### so b = 0
(mod 3)

 if igcd(a, b) = 1 then

 p := a^2 + 3*b^2:

(5.3)(5.3)

> >

> >

> >

(6.2)(6.2)
> >

> >

> >

> >

(5.4)(5.4)

> >

(6.1)(6.1)

> >

 ### r := 2*a; with a chosen to be POSITIVE; THUS

 r := 2*a: ### NO sign needed

 if r&^N mod p = 1 and isprime(p) then print(``);

 print(a, b, p, ifactor(order(r_new(p), p))) fi fi od
od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 72366.017, `seconds.`
a; a-12;

3300011
3299999

secs := 72366:

hrs := secs/3600.0;

Next, the a-range from 2 700 011 (= 11 mod 12) to a = 2 999 999:

DONE a = 2 700 011 (= 11 mod 12), ending at (=) took 20.6 hours

2700011 mod 12;
11

3000011 - 12;
2999999

The computation to be undertaken started from a = and ends at a =

st := time[real](): N := 2^19: A := 10^14:

 for a from 2700011 by 12 to (3000011 - 12) do ### so a = 2
(mod 3)

 for b from 12 by 12 to isqrt((A - a^2)/3) do ### so b = 0
(mod 3)

 if igcd(a, b) = 1 then

(6.3)(6.3)

> >

> >

> >

> >

> >

(6.4)(6.4)

> >

(7.1)(7.1)

(7.2)(7.2)

> >

> >

> >

> >

 p := a^2 + 3*b^2:

 ### r := 2*a; with a chosen to be POSITIVE; THUS

 r := 2*a: ### NO sign needed

 if r&^N mod p = 1 and isprime(p) then print(``);

 print(a, b, p, ifactor(order(r_new(p), p))) fi fi od
od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 74169.734, `seconds.`
a; a-12;

3000011
2999999

secs := 74169:

hrs := secs/3600.0;

Next, the a-range from 2 400 011 (= 11 mod 12) to a = 2 699 999:

DONE a = 2 400 011 (= 11 mod 12), ending at (=) took 18.95 hours (when only two
running)

2400011 mod 12;
11

2700011 - 12;
2699999

The computation to be undertaken started from a = and ends at a =

st := time[real](): N := 2^19: A := 10^14:

 for a from 2400011 by 12 to (2700011 - 12) do ### so a = 2
(mod 3)

 for b from 12 by 12 to isqrt((A - a^2)/3) do ### so b = 0
(mod 3)

> >

(8.2)(8.2)

> >

> >

> >

> >

(7.3)(7.3)

(7.4)(7.4)

(8.1)(8.1)

> >

> >

> >

> >

> >

> >

 if igcd(a, b) = 1 then

 p := a^2 + 3*b^2:

 ### r := 2*a; with a chosen to be POSITIVE; THUS

 r := 2*a: ### NO sign needed

 if r&^N mod p = 1 and isprime(p) then print(``);

 print(a, b, p, ifactor(order(r_new(p), p))) fi fi od
od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 68234.117, `seconds.`
a; a-12;

2700011
2699999

secs := 68234:

hrs := secs/3600.0;

Next, the a-range from 2 100 011 (= 11 mod 12) to a = 2 399 999:

DONE a = 2 100 011 (= 11 mod 12), ending at (=) took 20.24 hours

2100011 mod 12;
11

2400011 - 12;
2399999

The computation to be undertaken started from a = and ends at a =

st := time[real](): N := 2^19: A := 10^14:

 for a from 2100011 by 12 to (2400011 - 12) do ### so a = 2
(mod 3)

 for b from 12 by 12 to isqrt((A - a^2)/3) do ### so b = 0

> >

> >

> >

> >

> >

(9.1)(9.1)

(8.3)(8.3)

> >

> >

> >

(8.4)(8.4)

> >

> >

> >

> >
(9.2)(9.2)

(mod 3)

 if igcd(a, b) = 1 then

 p := a^2 + 3*b^2:

 ### r := 2*a; with a chosen to be POSITIVE; THUS

 r := 2*a: ### NO sign needed

 if r&^N mod p = 1 and isprime(p) then print(``);

 print(a, b, p, ifactor(order(r_new(p), p))) fi fi od
od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 72874.374, `seconds.`
a; a-12;

2400011
2399999

secs := 72874:

hrs := secs/3600.0;

Next, the a-range from 1 800 011 (= 11 mod 12) to a = 2 099 999:

DONE a = 1 800 011 (= 11 mod 12), ending at (=) took 21.13 hours

1800011 mod 12;
11

2100011 - 12;
2099999

The computation to be undertaken started from a = and ends at a =

st := time[real](): N := 2^19: A := 10^14:

 for a from 1800011 by 12 to (2100011 - 12) do ### so a = 2

> >

(9.3)(9.3)

> >

> >

(9.4)(9.4)

> >

> >

> >

(10.2)(10.2)

> >

(10.1)(10.1)
> >

> >

> >

> >

> >

(mod 3)

 for b from 12 by 12 to isqrt((A - a^2)/3) do ### so b = 0
(mod 3)

 if igcd(a, b) = 1 then

 p := a^2 + 3*b^2:

 ### r := 2*a; with a chosen to be POSITIVE; THUS

 r := 2*a: ### NO sign needed

 if r&^N mod p = 1 and isprime(p) then print(``);

 print(a, b, p, ifactor(order(r_new(p), p))) fi fi od
od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 76067.016, `seconds.`
a; a-12;

2100011
2099999

secs := 76067:

hrs := secs/3600.0;

Next, the a-range from 1 500 011 (= 11 mod 12) to a = 1 799 999:

DONE (on LAPTOP) a = 1 500 011 (= 11 mod 12), ending at (=) took 27.25 hours

1500011 mod 12;
11

1800011 - 12;
1799999

The computation to be undertaken started from a = and ends at a =

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >
(10.5)(10.5)

> >

(10.3)(10.3)

(10.4)(10.4)

st := time[real](): N := 2^19: A := 10^14:

 for a from 1500011 by 12 to (1800011 - 12) do ### so a = 2
(mod 3)

 for b from 12 by 12 to isqrt((A - a^2)/3) do ### so b = 0
(mod 3)

 if igcd(a, b) = 1 then

 p := a^2 + 3*b^2:

 ### r := 2*a; with a chosen to be POSITIVE; THUS

 r := 2*a: ### NO sign needed

 if r&^N mod p = 1 and isprime(p) then print(``);

 print(a, b, p, ifactor(order(r_new(p), p))) fi fi od
od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);
Warning, computation interrupted

`The time taken was`, 18045.940, `seconds.`

a; a-12;
1554815
1554803

estimate := floor((1800001 - 1500001)/(1554803 - 1500001)*18045);

98782/3600.0;
27.43944444

st := time[real](): N := 2^19: A := 10^14:

 for a from 1554803 by 12 to (1800011 - 12) do ### so a = 2
(mod 3)

 for b from 12 by 12 to isqrt((A - a^2)/3) do ### so b = 0
(mod 3)

 if igcd(a, b) = 1 then

 p := a^2 + 3*b^2:

 ### r := 2*a; with a chosen to be POSITIVE; THUS

 r := 2*a: ### NO sign needed

 if r&^N mod p = 1 and isprime(p) then print(``);

 print(a, b, p, ifactor(order(r_new(p), p))) fi fi od
od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);
Warning, computation interrupted

`The time taken was`, 48439.749, `seconds.`

> >

> >

> >

(10.6)(10.6)

(10.8)(10.8)

> >

> >

> >

(11.1)(11.1)

> >

> >

> >

> >

> >

> >

> >

(10.7)(10.7)

> >

a; a-12;
1702631
1702619

st := time[real](): N := 2^19: A := 10^14:

 for a from 1702619 by 12 to (1800011 - 12) do ### so a = 2
(mod 3)

 for b from 12 by 12 to isqrt((A - a^2)/3) do ### so b = 0
(mod 3)

 if igcd(a, b) = 1 then

 p := a^2 + 3*b^2:

 ### r := 2*a; with a chosen to be POSITIVE; THUS

 r := 2*a: ### NO sign needed

 if r&^N mod p = 1 and isprime(p) then print(``);

 print(a, b, p, ifactor(order(r_new(p), p))) fi fi od
od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 31608.600, `seconds.`
a; a-12;

1800011
1799999

secs := 18045 + 48440 + 31608:

hrs := secs/3600.0;

Next, the a-range from 1 200 011 (= 11 mod 12) to a = 1 499 999:

DONE a = 1 200 011 (= 11 mod 12), ending at (=) took 21.23 hours

Found a known Jacobi: 4 713 049 675 777

1200011 mod 12;

> >

> >

> >

(11.3)(11.3)

> >

(10.6)(10.6)

> >

(11.2)(11.2)

> >

> >

(11.1)(11.1)

(11.4)(11.4)

> >

> >

> >

> >

> >

> >

> >

11
1500011 - 12;

1499999

The computation to be undertaken started from a = and ends at a =

st := time[real](): N := 2^19: A := 10^14:

 for a from 1200011 by 12 to (1500011 - 12) do ### so a = 2
(mod 3)

 for b from 12 by 12 to isqrt((A - a^2)/3) do ### so b = 0
(mod 3)

 if igcd(a, b) = 1 then

 p := a^2 + 3*b^2:

 ### r := 2*a; with a chosen to be POSITIVE; THUS

 r := 2*a: ### NO sign needed

 if r&^N mod p = 1 and isprime(p) then print(``);

 print(a, b, p, ifactor(order(r_new(p), p))) fi fi od
od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 76435.960, `seconds.`
a; a-12;

1500011
1499999

secs := 76435:

hrs := secs/3600.0;

Next, the a-range from 900 011 (= 11 mod 12) to a = 1 199 999:

DONE a = 900 011 (= 11 mod 12), ending at (=) took 21.28 hours

> >

> >

(12.2)(12.2)

> >

> >

> >

(10.6)(10.6)

(12.1)(12.1)

> >

(12.4)(12.4)

> >

> >

> >

(11.1)(11.1)

> >

> >

> >

> >

(12.3)(12.3)

> >

> >

900011 mod 12;
11

1200011 - 12;
1199999

The computation to be undertaken started from a = and ends at a =

st := time[real](): N := 2^19: A := 10^14:

 for a from 900011 by 12 to (1200011 - 12) do ### so a = 2
(mod 3)

 for b from 12 by 12 to isqrt((A - a^2)/3) do ### so b = 0
(mod 3)

 if igcd(a, b) = 1 then

 p := a^2 + 3*b^2:

 ### r := 2*a; with a chosen to be POSITIVE; THUS

 r := 2*a: ### NO sign needed

 if r&^N mod p = 1 and isprime(p) then print(``);

 print(a, b, p, ifactor(order(r_new(p), p))) fi fi od
od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 76621.882, `seconds.`
a; a-12;

1200011
1199999

secs := 76621:

hrs := secs/3600.0;

FINALLY (Thurs 18th Sept 2014)!!:

DONE a = 600 011 (= 11 mod 12), ending at (=) took 21.54 hours

> >

> >

> >

(13.3)(13.3)

> >

> >

(10.6)(10.6)

(13.4)(13.4)

(13.1)(13.1)

> >

> >

(11.1)(11.1)

> >

> >

> >

> >

> >

> >

> >

> >

(13.2)(13.2)

600011 mod 12;
11

900011 - 12;
899999

The computation to be undertaken started from a = and ends at a =

st := time[real](): N := 2^19: A := 10^14:

 for a from 600011 by 12 to (900011 - 12) do ### so a = 2
(mod 3)

 for b from 12 by 12 to isqrt((A - a^2)/3) do ### so b = 0
(mod 3)

 if igcd(a, b) = 1 then

 p := a^2 + 3*b^2:

 ### r := 2*a; with a chosen to be POSITIVE; THUS

 r := 2*a: ### NO sign needed

 if r&^N mod p = 1 and isprime(p) then print(``);

 print(a, b, p, ifactor(order(r_new(p), p))) fi fi od
od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 77532.359, `seconds.`
a; a-12;

900011
899999

secs := 77532:

hrs := secs/3600.0;

FINALLY (Thurs 18th Sept 2014)!!:

The total run time to end of the above is:

> >

> >

> >

> >

(10.6)(10.6)

> >

> >

(11.1)(11.1)

> >

> >

> >

> >

> >

(1)(1)

print(``);

HOURS := 43.04 + 307.9 + 20.26 + 20.1 + 20.6 + 18.95 + 20.24 + 21.13 + 27.25 +
21.23 + 21.28 + 21.54;

DAYS := HOURS/24;

