
> > 

> > 

(1.1)(1.1)

> > 

> > 

### Non-standard Jacobi primes to 10^14.mws

### [1] 

### a = 1 (mod 12) 

### b = 0 (mod 12)

Procedures (now with HW (Hudson-Williams) included for faster computation of 

New additions after Sat. 9th Nov. 2013: the much faster a_new, b_new, r_new and u_new

with(numtheory): ### needed for 'order'

phi(100);

40

### 01:

Pow := proc(n, p) local t, a; t := n: a := 0: while t mod p = 0 do t := t/p:
a := a+1: od: a; end:

### 02:

a_new := proc(p) local SOLN, s, a;  

        SOLN := isolve(p = x^2 + 3*y^2):

           s := {op(op(1, [SOLN]))}:   

           a := op(2, [op(op(1, s))]):

   if mods(a, 3) = -1 then a := a else a := -a fi:

           a; end:

### 03:

b_new := proc(p) local SOLN, s, b;  

        SOLN := isolve(p = x^2 + 3*y^2):

           s := {op(op(1, [SOLN]))}:   

           b := abs(op(2, [op(op(2, s))])):
          
   b; end:

### 04:

r_new := proc(p) local SOLN, s, a, b, r;  



> > 

> > 

> > 

        SOLN := isolve(p = x^2 + 3*y^2):

           s := {op(op(1, [SOLN]))}:   

           a := op(2, [op(op(1, s))]):

   if mods(a, 3) = -1 then a := a else a := -a fi:

           b := abs(op(2, [op(op(2, s))])):
          
   if b mod 3 = 0 then r := 2*a; elif mods(b, 3) = -1 then r := -(a + 3*b); 
else r := -(a - 3*b); 

   fi; r; end:

### 05:

u_new := proc(p) local SOLN, s, a, b, u;  

        SOLN := isolve(p = x^2 + 3*y^2):

           s := {op(op(1, [SOLN]))}:   

           a := op(2, [op(op(1, s))]):

   if mods(a, 3) = -1 then a := a else a := -a fi:

           b := abs(op(2, [op(op(2, s))])):
          
   if b mod 3 = 0 then u := 2*a; elif mods(b, 3) = -1 then u := -(a - 3*b); 
else u := -(a + 3*b); 

   fi; u; end:
 

Having  p = 1 (mod 24) requires having both p = 1 (mod 3) and p = 1 (mod 8), and thus with  

with a and b relatively prime and of opposite parity this ( p = 1 (mod 24) ) is achieved at 4 cases:

a = 1, 5, 7 or 11 (mod 12)

b = 0 (mod 4), i.e. b = 0, 4, 8 (mod 12)

### if a mod 3 = 2 then a :=   the positive a     

### if a mod 3 = 1 then a := - the positive a  ***

### if b mod 3 = 0 then r :=   2*a;            ***

### if b mod 3 = 2 then r := -(a + 3*b); 



> > 

> > 

> > 

(2.1)(2.1)

> > 

> > 

### if b mod 3 = 1 then r := -(a - 3*b);          

Here we began with:

a = 1 (= 1 mod 12), ending at  took 50.23 hours. No Jacobi prime

print(``); 

      N := 2^19:

 bound := 10^7; print(``);

    for a from 1 by 12 to bound do                    ### so a = 1 (mod 3)

    for b from 12 by 12 to isqrt((10^14 - a^2)/3) do  ### so b = 0 (mod 3)

       if igcd(a, b) = 1 then 

             p := a^2 + 3*b^2:

         ### r := 2*a; with a chosen to be NEGATIVE; BUT raised to EVEN 
POWER, THUS

             r := 2*a: ### NO sign needed

       if r&^N mod p = 1 and isprime(p) then print(a, b, p, ifactor(order
(r_new(p), p))) fi fi od od;

Warning,  computation interrupted
a; a-12;

109321
109309

Total time to  was 27909 seconds, and then

Total extra time to  was 80316 seconds

Total extra time to  was 47875 seconds

Total extra time to  was 24732 seconds

The total run time to end of the above was:



> > 

> > 

> > 

(2.3)(2.3)

> > 

(2.2)(2.2)

> > secs := 27909 + 80316 + 47875 + 24732;

hrs  := secs/3600.0;

The FINAL computation started from a = 505 005:

st := time[real](): N := 2^19: A := 10^14: 

    for a from 500005 by 12 to 600000 do                    ### so a = 1 
(mod 3)

    for b from 12 by 12 to isqrt((A - a^2)/3) do       ### so b = 0 (mod 3)

       if igcd(a, b) = 1 then 

             p := a^2 + 3*b^2:

         ### r := 2*a; with a chosen to be NEGATIVE; BUT raised to EVEN 
POWER, THUS

             r := 2*a: ### NO sign needed

       if r&^N mod p = 1 and isprime(p) then print(a, b, p, ifactor(order
(r_new(p), p))) fi fi od od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 24732.939, `seconds.`
a; a-12;

600001
599989

A jump forward to a = 3 600 001 (= 1 mod 12), ending at  took 313.05 hours. No 
new Jacobi prime



> > 

> > 

(3.2)(3.2)

> > 

> > 

> > 

(3.1)(3.1)
3600001 mod 12;

1

Total time to  was 23180 seconds

Total time to  was 58606 seconds

Total time to  was 58021 seconds

Total time to  was 83159 seconds

Total time to  was 47156 seconds

Total time to  was 87942 seconds

Total time to  was 62220 seconds

Total time to  was 126164 seconds

Total time to  was 50003 seconds

Total time to  was 45517 seconds

Total time to  was 95755 seconds

Total time to  was 88816 seconds [6939 fewer secs]

Total time to  was 85385 seconds [3431 fewer secs]

Total time to  was 73893 seconds [11492 fewer secs]

Total time to  was 63887 seconds [10006 fewer secs]

Total time to END  was 77272 seconds 

The total run time to end of the above is:

secs := 23180 + 58606 + 58021 + 83159 + 47156 + 87942 + 62220 + 126164 + 
50003 + 45517 + 95755 

        + 88816 + 85385 + 73893 + 63887 + 77272;

hrs  := secs/3600.0;

The FINAL computation to be undertaken started from a = :

st:= time[real](): print(``); 



(3.3)(3.3)

> > 

(4.1)(4.1)

> > 

> > 

> > 

> > 

      N := 2^19:

 bound := 10^7; print(``);

    for a from 9000001 by 12 to (bound-1) do                    ### so a = 1
(mod 3)

    for b from 12 by 12 to isqrt((10^14 - a^2)/3) do           ### so b = 0 
(mod 3)

       if igcd(a, b) = 1 then 

             p := a^2 + 3*b^2:

         ### r := 2*a; with a chosen to be NEGATIVE; BUT raised to EVEN 
POWER, THUS

             r := 2*a: ### NO sign needed

       if r&^N mod p = 1 and isprime(p) then print(a, b, p, ifactor(order
(r_new(p), p))) fi fi od od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 77272.246, `seconds.`
a; a-12;

10000009
9999997

Now we pulled back in monotonic decreasing blocks of 300 000 (= 0 mod 12):

First, the a-range from 3 300 001 (= 1 mod 12) to 3 600 001 - 12:

DONE a = 3 300 001 (= 1 mod 12), ending at  (= ) took 20.5 hours

3300001 mod 12;



> > 

(4.1)(4.1)

> > 

> > 

> > 

(4.3)(4.3)

> > 

(4.2)(4.2)

> > 

1

The computation to be undertaken started from a = : and ends at a = 3 599 989 = 

Total time to  was 33204 seconds 

Total time to  was 19045 seconds 

Total time to END  was 21588 seconds 

The total run time to end of the above is:

secs := 33204 + 19045 + 21588;

hrs  := secs/3600.0;

The FINAL computation to be undertaken started from a = :

st := time[real](): N := 2^19: A := 10^14: 

    for a from 3512569 by 12 to (3600001 - 12) do          ### so a = 1 (mod
3)

    for b from 12 by 12 to isqrt((A - a^2)/3) do           ### so b = 0 (mod
3)

       if igcd(a, b) = 1 then 

             p := a^2 + 3*b^2:

         ### r := 2*a; with a chosen to be NEGATIVE; BUT raised to EVEN 
POWER, THUS

             r := 2*a: ### NO sign needed

if r&^N mod p = 1 and isprime(p) then print(``); print(a, b, p, ifactor
(order(r_new(p), p))) fi fi od od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 21588.176, `seconds.`
a; a-12;

3600001
3599989



> > 

> > 

> > 

(4.1)(4.1)

> > 

(5.2)(5.2)

> > 

> > 

> > 

(5.3)(5.3)

> > 

(5.1)(5.1)

Next, the a-range from 3 000 001 (= 1 mod 12) to a = 3 299 989:

DONE a = 3 000 001 (= 1 mod 12), ending at  (= ) took 22.31 hours

3000001 mod 12;

1
3300001 - 12;

3299989

The computation to be undertaken started from a =  and ends at a = 3 299 989 = 

st := time[real](): N := 2^19: A := 10^14: 

    for a from 3000001 by 12 to (3300001 - 12) do          ### so a = 1 (mod
3)

    for b from 12 by 12 to isqrt((A - a^2)/3) do           ### so b = 0 (mod
3)

       if igcd(a, b) = 1 then 

             p := a^2 + 3*b^2:

         ### r := 2*a; with a chosen to be NEGATIVE; BUT raised to EVEN 
POWER, THUS

             r := 2*a: ### NO sign needed

if r&^N mod p = 1 and isprime(p) then print(``); print(a, b, p, ifactor
(order(r_new(p), p))) fi fi od od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 80350.939, `seconds.`
a; a-12;

3300001
3299989



(6.1)(6.1)

> > 

> > 

(4.1)(4.1)

> > 

(5.4)(5.4)

(6.2)(6.2)

> > 

> > 

> > 

> > 

> > 

The total run time to end of the above is:

secs := 80350;

hrs  := secs/3600.0;

Next, the a-range from 2 700 001 (= 1 mod 12) to a = 2 999 989:

DONE a = 2 700 001 (= 1 mod 12), ending at  (= ) took 20.49 hours (less 
than ... )

2700001 mod 12;

1
3000001 - 12;

2999989

The computation to be undertaken started from a =  and ends at a = 2 999 989 = 

st := time[real](): N := 2^19: A := 10^14: 

    for a from 2700001 by 12 to (3000001 - 12) do          ### so a = 1 (mod
3)

    for b from 12 by 12 to isqrt((A - a^2)/3) do           ### so b = 0 (mod
3)

       if igcd(a, b) = 1 then 

             p := a^2 + 3*b^2:

         ### r := 2*a; with a chosen to be NEGATIVE; BUT raised to EVEN 
POWER, THUS

             r := 2*a: ### NO sign needed

if r&^N mod p = 1 and isprime(p) then print(``); print(a, b, p, ifactor
(order(r_new(p), p))) fi fi od od;



> > 

(4.1)(4.1)

> > 

> > 

> > 

> > 

(6.3)(6.3)

> > 

> > 

> > 

> > 

(7.2)(7.2)

(7.1)(7.1)

(6.4)(6.4)

> > 

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 73788.103, `seconds.`
a; a-12;

3000001
2999989

The total run time to end of the above is:

secs := 73788;

hrs  := secs/3600.0;

Next, the a-range from 2 400 001 (= 1 mod 12) to a = 2 699 989:

DONE a = 2 400 001 (= 1 mod 12), ending at  (= ) took 20.93 hours 

2400001 mod 12;

1
2700001 - 12;

2699989

The computation to be undertaken started from a =  and ends at a = 2 699 989 = 

st := time[real](): N := 2^19: A := 10^14: 

    for a from 2400001 by 12 to (2700001 - 12) do          ### so a = 1 (mod
3)

    for b from 12 by 12 to isqrt((A - a^2)/3) do           ### so b = 0 (mod
3)

       if igcd(a, b) = 1 then 



> > 

> > 

(4.1)(4.1)

> > 

> > 

> > 

> > 

(7.4)(7.4)

> > 

(7.3)(7.3)

(8.2)(8.2)

> > 

> > 

(8.1)(8.1)

> > 

             p := a^2 + 3*b^2:

         ### r := 2*a; with a chosen to be NEGATIVE; BUT raised to EVEN 
POWER, THUS

             r := 2*a: ### NO sign needed

if r&^N mod p = 1 and isprime(p) then print(``); print(a, b, p, ifactor
(order(r_new(p), p))) fi fi od od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 75353.637, `seconds.`
a; a-12;

2700001
2699989

The total run time to end of the above is:

secs := 75353;

hrs  := secs/3600.0;

Next, the a-range from 2 100 001 (= 1 mod 12) to a = 2 399 989:

DONE a = 2 100 001 (= 1 mod 12), ending at  (= ) took 20.97 hours 

2100001 mod 12;

1
2400001 - 12;

2399989

The computation to be undertaken started from a =  and ends at a = 2 399 989 = 



> > 

> > 

(4.1)(4.1)

> > 

> > 

(9.1)(9.1)
> > 

> > 

> > 

> > 

(8.4)(8.4)

(8.3)(8.3)

> > 

> > 

st := time[real](): N := 2^19: A := 10^14: 

    for a from 2100001 by 12 to (2400001 - 12) do          ### so a = 1 (mod
3)

    for b from 12 by 12 to isqrt((A - a^2)/3) do           ### so b = 0 (mod
3)

       if igcd(a, b) = 1 then 

             p := a^2 + 3*b^2:

         ### r := 2*a; with a chosen to be NEGATIVE; BUT raised to EVEN 
POWER, THUS

             r := 2*a: ### NO sign needed

if r&^N mod p = 1 and isprime(p) then print(``); print(a, b, p, ifactor
(order(r_new(p), p))) fi fi od od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 75161.858, `seconds.`
a; a-12;

2400001
2399989

The total run time to end of the above is:

secs := 75161;

hrs  := secs/3600.0;

Next, the a-range from 1 800 001 (= 1 mod 12) to a = 2 099 989:

DONE a = 1 800 001 (= 1 mod 12), ending at  (= ) took 20.7 hours 

1800001 mod 12;

1



> > 

> > 

(4.1)(4.1)

> > 

> > 

> > 

> > 

(9.3)(9.3)

> > 

> > 

> > 

(9.4)(9.4)

(9.2)(9.2)

> > 

2100001 - 12;

2099989

The computation to be undertaken started from a =  and ends at a = 2 099 989 = 

st := time[real](): N := 2^19: A := 10^14: 

    for a from 1800001 by 12 to (2100001 - 12) do          ### so a = 1 (mod
3)

    for b from 12 by 12 to isqrt((A - a^2)/3) do           ### so b = 0 (mod
3)

       if igcd(a, b) = 1 then 

             p := a^2 + 3*b^2:

         ### r := 2*a; with a chosen to be NEGATIVE; BUT raised to EVEN 
POWER, THUS

             r := 2*a: ### NO sign needed

if r&^N mod p = 1 and isprime(p) then print(``); print(a, b, p, ifactor
(order(r_new(p), p))) fi fi od od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 74511.153, `seconds.`
a; a-12;

2100001
2099989

The total run time to end of the above is:

secs := 74511;

hrs  := secs/3600.0;

Next, the a-range from 1 500 001 (= 1 mod 12) to a = 1 799 989:



> > 

(4.1)(4.1)

> > 

> > 

> > 

> > 

(10.3)(10.3)

> > 

(10.2)(10.2)

(10.1)(10.1)
> > 

(10.4)(10.4)

> > 

> > 

> > 

(9.2)(9.2)

> > 

> > 

DONE a = 1 500 001 (= 1 mod 12), ending at  (= ) took 21.19 hours 

1500001 mod 12;

1
1800001 - 12;

1799989

The computation to be undertaken started from a =  and ends at a = 1 799 989 = 

st := time[real](): N := 2^19: A := 10^14: 

    for a from 1500001 by 12 to (1800001 - 12) do          ### so a = 1 (mod
3)

    for b from 12 by 12 to isqrt((A - a^2)/3) do           ### so b = 0 (mod
3)

       if igcd(a, b) = 1 then 

             p := a^2 + 3*b^2:

         ### r := 2*a; with a chosen to be NEGATIVE; BUT raised to EVEN 
POWER, THUS

             r := 2*a: ### NO sign needed

if r&^N mod p = 1 and isprime(p) then print(``); print(a, b, p, ifactor
(order(r_new(p), p))) fi fi od od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 76293.618, `seconds.`
a; a-12;

1800001
1799989

The total run time to end of the above is:

secs := 76293;

hrs  := secs/3600.0;



> > 

> > 

(4.1)(4.1)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(11.3)(11.3)

> > 

> > 

(11.1)(11.1)

(11.2)(11.2)

(9.2)(9.2)

> > 

Next, the a-range from 1 200 001 (= 1 mod 12) to a = 1 499 989:

DONE a = 1 200 001 (= 1 mod 12), ending at  (= ) took 21.72 hours 

1200001 mod 12;

1
1500001 - 12;

1499989

The computation to be undertaken started from a =  and ends at a = 1 499 989 = 

st := time[real](): N := 2^19: A := 10^14: 

    for a from 1200001 by 12 to (1500001 - 12) do          ### so a = 1 (mod
3)

    for b from 12 by 12 to isqrt((A - a^2)/3) do           ### so b = 0 (mod
3)

       if igcd(a, b) = 1 then 

             p := a^2 + 3*b^2:

         ### r := 2*a; with a chosen to be NEGATIVE; BUT raised to EVEN 
POWER, THUS

             r := 2*a: ### NO sign needed

if r&^N mod p = 1 and isprime(p) then print(``); print(a, b, p, ifactor
(order(r_new(p), p))) fi fi od od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 78199.358, `seconds.`
a; a-12;

1500001
1499989



> > 

(4.1)(4.1)

> > 

> > 

(12.2)(12.2)

> > 

> > 

> > 

(11.4)(11.4)

> > 

> > 

(12.1)(12.1)

> > 

> > 

> > 

(9.2)(9.2)

> > 

The total run time to end of the above is:

secs := 78199;

hrs  := secs/3600.0;

Next, the a-range from 900 001 (= 1 mod 12) to a = 1 199 989:

DONE a = 900 001 (= 1 mod 12), ending at  (= ) took 21.52 hours 

900001 mod 12;

1
1200001 - 12;

1199989

The computation to be undertaken started from a =  and ends at a = 1 199 989 = 

st := time[real](): N := 2^19: A := 10^14: 

    for a from 900001 by 12 to (1200001 - 12) do           ### so a = 1 (mod
3)

    for b from 12 by 12 to isqrt((A - a^2)/3) do           ### so b = 0 (mod
3)

       if igcd(a, b) = 1 then 

             p := a^2 + 3*b^2:

         ### r := 2*a; with a chosen to be NEGATIVE; BUT raised to EVEN 
POWER, THUS

             r := 2*a: ### NO sign needed

if r&^N mod p = 1 and isprime(p) then print(``); print(a, b, p, ifactor
(order(r_new(p), p))) fi fi od od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);



> > 

(12.3)(12.3)

(4.1)(4.1)

> > 

(13.1)(13.1)

(13.2)(13.2)

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

(12.4)(12.4)

> > 

(9.2)(9.2)

> > 

> > 

`The time taken was`, 77469.164, `seconds.`
a; a-12;

1200001
1199989

The total run time to end of the above is:

secs := 77469;

hrs  := secs/3600.0;

AND FINALLY (Wed. 17th Sept 2014)!!:

DONE a = 600 001 (= 1 mod 12), ending at  (= ) took 21.42 hours 

600001 mod 12;

1
900001 - 12;

899989

The computation to be undertaken started from a =  and ends at a = 899 989 = 

st := time[real](): N := 2^19: A := 10^14: 

    for a from 600001 by 12 to (900001 - 12) do            ### so a = 1 (mod
3)

    for b from 12 by 12 to isqrt((A - a^2)/3) do           ### so b = 0 (mod
3)

       if igcd(a, b) = 1 then 

             p := a^2 + 3*b^2:



> > 

> > 

(4.1)(4.1)

(1)(1)

> > 

> > 

> > 

(13.4)(13.4)

> > 

(13.3)(13.3)

> > 

> > 

> > 

> > 

> > 

(9.2)(9.2)

> > 

> > 

         ### r := 2*a; with a chosen to be NEGATIVE; BUT raised to EVEN 
POWER, THUS

             r := 2*a: ### NO sign needed

if r&^N mod p = 1 and isprime(p) then print(``); print(a, b, p, ifactor
(order(r_new(p), p))) fi fi od od;

print(``); lprint(`The time taken was`, time[real]() - st, `seconds.`);

`The time taken was`, 77099.080, `seconds.`
a; a-12;

900001
899989

The total run time to end of the above is:

secs := 77099;

hrs  := secs/3600.0;

The total run time to end of the above is:

print(``);

HOURS := 50.23 + 313.05 + 20.5 + 22.31 + 20.49 + 20.93 + 20.97 + 20.7 + 21.19 +
21.72 + 21.52 + 21.42;

DAYS := HOURS/24;


