The Lucas-(Kraithcik)-Lehmer-Selfridge Theorem
Background:  Let � EMBED Equation.2  ���how can one tell whether n is a prime or composite?  Although the Eratosthenes test (if n has no prime factor between� EMBED Equation.2  ���then n is prime, and if n has a prime factor between� EMBED Equation.2  ���then n is composite) ‘works’, it is absolutely useless for large integers. Let n be odd and subject it to a base 2 ‘Fermat test’ (to start with); if n ‘fails’ the test then one immediately knows that n is composite, but if n ‘passes’ the test does it follow that n is prime?  Not at all!  n could be a ‘pseudoprime’.
We now begin our study of a very important sequence of theorems (the first two are due to Edouard Lucas, the next to D. H. Lehmer, and the final one to John Selfridge) which guarantee that a number is a prime providing certain conditions are satisfied. Here is the first of a number of theorems which guarantee that a number is prime:
Theorem 1 (Lucas, 1876). Let � EMBED Equation.2  ���such that: 
� EMBED Equation.2  ���and                                                                           � EMBED Equation.2  ���for all x with� EMBED Equation.2  ��� 
then n is prime.
Alternative wording of Theorem 1.  Let � EMBED Equation.2  ���and suppose there is some� EMBED Equation.2  ���such that � EMBED Equation.2  ��� then n is prime. 
Recall work from 2nd year.  Two important result we need to recall are these: 
Let � EMBED Equation.2  ���
Let � EMBED Equation.2  ���
Proof� of Lucas’ 1876 theorem.  Suppose n is composite; we will show that that is impossible, and so n must be prime.  We show from� EMBED Equation.2  ���that � EMBED Equation.2  ��� are congruent mod n - in some order - to � EMBED Equation.2  ��� and then argue that is impossible.  Firstly, none of � EMBED Equation.2  ��� is 0 mod n, because if � EMBED Equation.2  ��� then � EMBED Equation.2  ��� Now, let  p be a prime with� EMBED Equation.2  ���we would have � EMBED Equation.2  ��� and so would have� EMBED Equation.2  ��� But � EMBED Equation.2  ���and � EMBED Equation.2  ���would conflict with � EMBED Equation.2  ���and so none of � EMBED Equation.2  ��� is 0 mod n.  Secondly, no two of � EMBED Equation.2  ��� are congruent to each other mod n.  How do we know that?:  If some two of � EMBED Equation.2  ���were congruent to each other mod n then we would have:
� EMBED Equation.2  ���
But then:
� EMBED Equation.2  ���
from which, since � EMBED Equation.2  ���it follows� that� EMBED Equation.2  ���and so setting � EMBED Equation.2  ��� we have � EMBED Equation.2  ���  That conflicts with � EMBED Equation.2  ���above, and it follows that no two of � EMBED Equation.2  ��� are congruent to each other mod n.           It follows that � EMBED Equation.2  ��� are congruent mod n, in some order, to � EMBED Equation.2  ����and so for one of those integers r � EMBED Equation.2  ���we would have that � EMBED Equation.2  ���where p is the earlier prime dividing n (and so � EMBED Equation.2  ���  That is impossible since � EMBED Equation.2  ���means that � EMBED Equation.2  ���for some � EMBED Equation.2  ���from which, with� EMBED Equation.2  ���we obtain � EMBED Equation.2  ��� That conflicts with � EMBED Equation.2  ���  and so n cannot be composite. Thus n is prime.�
Example to illustrate. Use the above theorem to verify that 7 is prime.
Solution. � EMBED Equation.2  ���useless: � EMBED Equation.2  ���for all r, and � EMBED Equation.2  ��� With� EMBED Equation.2  ��� � EMBED Equation.2  ��� So, with � EMBED Equation.2  ���we have � EMBED Equation.2  ���and� EMBED Equation.2  ���for all x with� EMBED Equation.2  ��� and thus � EMBED Equation.2  ���is prime.�Exercises. Use theorem 1 to verify that 3, 5, 11 and 13 are prime.
Comment: This theorem is really useless from a computational point of view since to use       it requires not only having a value of a for which� � EMBED Equation.2  ���but it requires calculating, in extremis, the values of� EMBED Equation.2  ���for all x with� EMBED Equation.2  ��� so as to check that none of those is 1. Heavens, that’s much more calculation than the already useless method of Eratosthenes!! It is, of course, a true (partial) converse of Fermat’s ‘little’ theorem, but nevertheless you might reasonably ask what is the point in recording  it since it is so useless. I do so because there are improvements to it - the first due to Lucas himself, then another to D. H. Lehmer (in 1927, producing a really fine, and very practical test for primality), and another fine one by John Selfridge (in 1967) - and all the proofs of those require the first Lucas theorem to back them up. An improvement (a good one, but not good enough) on the above theorem is:
Theorem 2 (Lucas, 1891). Let� EMBED Equation.2  ���such that:
� EMBED Equation.2  ���and
� EMBED Equation.2  ���for all x with� EMBED Equation.2  ���and� EMBED Equation.2  ���

then n is prime.
Comment. Before proceeding to look at the proof (which is much shorter than the one we have just seen!), let us first see appreciate that this theorem is superior to the earlier one.
Example. Use theorem 2 to verify that 7 is prime.
Solution. [As before, we still need to get an ‘a’ that satisfies condition � EMBED Equation.2  ���but now we don’t have to do as much calculation so as to satisfy condition� EMBED Equation.2  ���] As before, choosing � EMBED Equation.2  ���useless: � EMBED Equation.2  ���for all r, and� EMBED Equation.2  ��� Now, we have � EMBED Equation.2  ��� So� EMBED Equation.2  ��� Next, instead of needing all natural numbers that are less than� EMBED Equation.2  ���we only need all the natural numbers less than 6 that are factors of 6. They are 1, 2 and 3, and so we do these calculations only: � EMBED Equation.2  ���  Thus 7 is prime.                     Comment. This 1891 theorem of Lucas is, of course, superior to his earlier 1876 theorem. However it is still not very useful (except in very rare circumstances). Admittedly you don’t have to calculate� EMBED Equation.2  ���for all x with� EMBED Equation.2  ���you only need to calculations for those x’s which are factors of� EMBED Equation.2  ���that are less than � EMBED Equation.2  ��� Nevertheless that can still entail a large amount of computation if � EMBED Equation.2  ��� has many factors.                  
Proof of theorem 2.  Since� EMBED Equation.2  ���then � EMBED Equation.2  ���and thus � EMBED Equation.2  ���exists. Then, from � EMBED Equation.2  ���we have� EMBED Equation.2  ��� But since � EMBED Equation.2  ���for all x with � EMBED Equation.2  ���and � EMBED Equation.2  ��� it follows that r must equal � EMBED Equation.2  ��� It immediately follows from the earlier Lucas theorem that n is prime.
Exercises. Use theorem 2 to verify that 5, 11, 13 and 17 are prime.      
Comment.  A vastly superior theorem to theorem 2 is the one which I now call the ‘Lucas-(Kraitchik)-Lehmer theorem’, whose statement and proof are given below.   (Kraitchik played only a very small part in it. It is clear from some writings of his from the early 1920’s that he realised the following theorem 3 is true, but he gave no proof of it.)
Lehmer’s own (1927) statement of this theorem was a bit archaic, and the proof that he went on to give of it was a little difficult (for students!) to follow.  So I am restating his theorem, and giving a simpler (I hope!) proof of it:             
Theorem 3 (what I call the ‘Lucas-Kraitchik-Lehmer Theorem’). Let � EMBED Equation.2  ���with� EMBED Equation.2  ��� and suppose there is some � EMBED Equation.2  ���with:
 � EMBED Equation.2  ���
 � EMBED Equation.2  ��� for all primes p with � EMBED Equation.2  ���
then n is prime.           
Comment. This is a powerful theorem, whose power will only be properly realised when you do Maple work with some very large numbers whose primality can be  established incredibly quickly with this theorem.                                                                         
Proof. [Aside: the strategy of the proof is to show that � EMBED Equation.2  ���from which it follows from Lucas’ theorem of 1876 that n is prime.]   Let � EMBED Equation.2  ��� Then � EMBED Equation.2  ���and so we have � EMBED Equation.2  ��� [Our aim now is to prove that� EMBED Equation.2  ���- from which we obtain � EMBED Equation.2  ���- and we achieve that by supposing that R is greater  than 1, and so get our hands on a prime p dividing R with which we play … .] 
Suppose� EMBED Equation.2  ���then some prime p divides R, and so � EMBED Equation.2  ��� for some� EMBED Equation.2  ��� Thus:
� EMBED Equation.2  ��� 
and so  p is a divisor (prime) of � EMBED Equation.2  ��� But, since � EMBED Equation.2  ���then:
� EMBED Equation.2  ���
But from� EMBED Equation.2  ���we then have:
� EMBED Equation.2  ���

But� EMBED Equation.2  ���is incompatible with � EMBED Equation.2  ���and so R cannot be greater than 1. It follows that � EMBED Equation.2  ���
and so � EMBED Equation.2  ��� Thus, by Lucas’ theorem (of 1876), it follows that n is prime.
Comment. The Lehmer 1927 theorem is sometimes referred to - for obvious reasons -    as the ‘� EMBED Equation.2  ���’ theorem. There is a further important improvement (dating from 1967) of D.H. Lehmer’s theorem that is due to another American mathematician John Selfridge.     I will not be proving this theorem, but will state it below. You will only appreciate the value of Selfridge’s improvement after you have had experience with using the above theorem with Maple computations.  Selfridge’s theorem is sometimes referred to as the ‘change of base’ theorem, for reasons which will become apparent when you use it.
Theorem 4 (what I call the ‘Lucas-(Kraitchik)-Lehmer-Selfridge Theorem’). Let � EMBED Equation.2  ���with� EMBED Equation.2  ��� and suppose that for each prime � EMBED Equation.2  ���with � EMBED Equation.2  ���there is some � EMBED Equation.2  ���with:
 � EMBED Equation.2  ���
 � EMBED Equation.2  ���
then n is prime. [I won’t prove this theorem, though it isn’t any more difficult.]

Reminder.  Remind me to show you a group photograph (taken in Oxford University     in August 1969) of various mathematicians in which you will see D. H. Lehmer, John Selfridge, and yours truly (J.C.).



� The original Lucas proof involved using a theorem (the famous ‘Euler-Fermat theorem’) whose own proof involves quite a lot of extra work. Here I am giving a proof which avoids such a reference.
� This is where we are using the two 2nd year results.
� This part is not so bad, and it will be a feature of all the later improvements of this first theorem of Lucas.
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