Lucas-Proth--(Pocklington)-(Lehmer-Selfridge) Theorems�





Background:  Let � EMBED Equation.2  ���how can one tell whether n is a prime or composite?  Although the Eratosthenes test (if n has no prime factor between� EMBED Equation.2  ���then n is prime, and if n has a prime factor between� EMBED Equation.2  ���then n is composite) ‘works’, it is absolutely useless for large integers. 





The serious, modern study of primality testing commences with using Fermat’s ‘little’ theorem, which states: Let  p be any prime and let� EMBED Equation.2  ���with� EMBED Equation.2  ��� then � EMBED Equation.2  ��� [In words: if p is any prime number, and a is any integer not divisible by p, then a to the power of  (p minus one) leaves remainder one when divided by p.]





An obvious question to ask: is the converse of this theorem true? 





That is, if � EMBED Equation.2  ���and � EMBED Equation.2  ���( where a is some integer ( must n be a prime?





Clearly this cannot have an obvious affirmative answer. If one chose a to be ‘1’, then one would have� EMBED Equation.2  ���no matter what value n had. So, let’s be more serious: suppose one had a natural number n, and that one also had an integer a such that � EMBED Equation.2  ���( where� � EMBED Equation.2  ���( would n have to be a prime number? [Since we are going to be operating mod n, then there is no point in choosing values of a outside this range.] To get us started, let n be odd and subject it to a base 2 ‘Fermat test’; that is, we calculate� EMBED Equation.2  ��� If that isn’t ‘1’, then automatically n isn’t prime (we say n ‘fails’ the Fermat base-2 test). But what if n ‘passes’ the Fermat base-2; that is, what can we deduce if it turns out that � EMBED Equation.2  ��� Does it follow that n is prime?  Not at all! n could be a ‘pseudoprime.’ Of course one could then subject n to a Fermat base-3 test, and … .





However, we do not ‘throw out the baby with the bath-water’!! There are several important theorems ( starting with one of Lucas’ (1876) ( which all roughly say something like this: if � EMBED Equation.2  ���and� EMBED Equation.2  ���such that � EMBED Equation.2  ���


then ( providing certain other things also happen ( n must be a prime. Such theorems almost all depend in one way or another on the Lucas 1876 theorem, which I now state and prove:





Theorem 1 (Lucas, 1876). Let � EMBED Equation.2  ���such that: 





� EMBED Equation.2  ���


and� EMBED Equation.2  ���for all x with� EMBED Equation.2  ��� 





then n is prime. [In other words: if n is a natural number, and a is an integer with


� EMBED Equation.2  ��� but none of � EMBED Equation.2  ���is congruent to 1 mod n, then n is prime.]





Two examples to help clarify: 





Let � EMBED Equation.2  ��� Then � EMBED Equation.2  ���but�� EMBED Equation.2  ����and none of those is ‘1’ mod 5. Thus 5 is prime, by Lucas’ 1876 theorem.�


Let � EMBED Equation.2  ��� Then � EMBED Equation.2  ���but � EMBED Equation.2  ����and here, because of that ‘1,’ no conclusion may be immediately drawn about 7. �


However if one chooses another value for a, � EMBED Equation.2  ��� then � EMBED Equation.2  ���


but now � EMBED Equation.2  ����and none of those is ‘1’ mod 7.  Thus 7 is prime, by Lucas’ 1876 theorem.





Alternative wording of Theorem 1.  Let � EMBED Equation.2  ���and suppose there is some� EMBED Equation.2  ���such that � EMBED Equation.2  ��� then n is prime. 


�Lucas’ own proof of his 1876 theorem required using the ‘Euler-Fermat theorem’( a generalisation of Fermat’s ‘little’ theorem ( but that theorem requires quite a bit of preliminary work to prove it, and I here give a proof of the Lucas 1876 theorem which manages to circumvent using Euler-Fermat. First, however, I require some elementary side results to be recalled:





Recall work from 2nd year.  Two important result� we need are: �


Let � EMBED Equation.2  ���


Let � EMBED Equation.2  ����


Proof� of Lucas’ 1876 theorem. We begin by proving (in two steps) that as a simple consequence of� EMBED Equation.2  ���the numbers � EMBED Equation.2  ��� are congruent mod n ( in some order ( to the numbers� EMBED Equation.2  ��� 


Firstly, none of � EMBED Equation.2  ��� is 0 mod n, because if � EMBED Equation.2  ���for some � EMBED Equation.2  ���then � EMBED Equation.2  ��� Now, let � EMBED Equation.2  ���be a prime with� EMBED Equation.2  ���we would have � EMBED Equation.2  ��� and so would have� EMBED Equation.2  ��� But � EMBED Equation.2  ���and � EMBED Equation.2  ���would conflict with � EMBED Equation.2  ���and so none of � EMBED Equation.2  ��� is 0 mod n.  Secondly, no two of � EMBED Equation.2  ��� are congruent to each other mod n. [Why?] Well, if some two of � EMBED Equation.2  ���were congruent mod n then� EMBED Equation.2  ���for some u, v with � EMBED Equation.2  ��� But then� EMBED Equation.2  ���and so� EMBED Equation.2  ���from which, since � EMBED Equation.2  ���it follows� that� EMBED Equation.2  ���and setting � EMBED Equation.2  ��� we have � EMBED Equation.2  ���where � EMBED Equation.2  ���That conflicts with � EMBED Equation.2  ���above, and it follows that no two of � EMBED Equation.2  ��� are congruent to each other mod n. Thus � EMBED Equation.2  ��� are congruent mod n, in some order, to � EMBED Equation.2  ���





Now we suppose n is composite, and show that is impossible. Since n is composite then it must be divisible by some prime number p with � EMBED Equation.2  ���and so p is one of the numbers in the range 2 to � EMBED Equation.2  ��� Then, from above, we know there is some natural number r � EMBED Equation.2  ��� such that � EMBED Equation.2  ���But then � EMBED Equation.2  ���for some � EMBED Equation.2  ���from which, with� EMBED Equation.2  ���we obtain� EMBED Equation.2  ���and so we then have � EMBED Equation.2  ��� That (p dividing n and a) conflicts with � EMBED Equation.2  ��� and so n cannot be composite. Thus n is prime. [end of proof]





Exercises. Use Lucas’ 1876 theorem to verify that 11 and 13 are prime.





Comment: This theorem is really useless from a computational point of view since to use it requires not only having a value of a for which� � EMBED Equation.2  ���but it means having to calculate, in extremis, the values of� EMBED Equation.2  ���for all x with� EMBED Equation.2  ��� to check that none of them is 1. Heavens, that’s much more calculation than the already useless method of Eratosthenes!!  It is, of course, a true (partial) converse of Fermat’s ‘little’ theorem, but nevertheless you might reasonably ask what is the point in recording it since it is so useless. I do so because there are several very important improvements or extensions to it, not all of which will be developed here. One simple extension of it (and easily proved), which Lucas himself gave, was his





Theorem 2 (Lucas, 1878). Let � EMBED Equation.2  ���such that: 





� EMBED Equation.2  ���and 


  � EMBED Equation.2  ���for all x with� EMBED Equation.2  ��� 





then n is prime. 





Comment. This obviously represents an improvement� since now one doesn’t have to worry about � EMBED Equation.2  ���not being � EMBED Equation.2  ���for all x between 1 and � EMBED Equation.2  ���(inclusive), but only about � EMBED Equation.2  ���not being� EMBED Equation.2  ��� for all x between 1 and � EMBED Equation.2  ���(inclusive) for which is a factor of � EMBED Equation.2  ��� There were(in time(two much more substantial improvements of Lucas’ theorem. One is the powerful (in applications):





Lucas-(Kraitchik)-Lehmer 1927) Theorem. Let � EMBED Equation.2  ���� EMBED Equation.2  ���and let the complete prime factorisation of � EMBED Equation.2  ���be � EMBED Equation.2  ��� Suppose there is an � EMBED Equation.2  ���with:





� EMBED Equation.2  ���


and � EMBED Equation.2  ���


then n is prime.





And a further improvement of that is the highly effective:





Selfridge’s (1967) ‘change of base’ theorem  Let � EMBED Equation.2  ���be the complete prime factorisation of � EMBED Equation.2  ���and suppose there are integers � EMBED Equation.2  ��� (not necessarily distinct) such that:


� EMBED Equation.2  ���


and � EMBED Equation.2  ���


then n is prime.





Comment. All of these theorems required that one knew the complete factorisation of � EMBED Equation.2  ���but one earlier highly effective result frequently allowed one to establish the primality of n without needing to know the complete factorisation:





(A version of) Pocklington’s (1914) theorem: Let � EMBED Equation.2  ���be an incomplete factorisation of � EMBED Equation.2  ��� (where U is the ‘unfactored part’ of � EMBED Equation.2  ��� and� EMBED Equation.2  ���is its factored part) with � EMBED Equation.2  ��� Suppose there is an a such that:


� EMBED Equation.2  ��� 


and � EMBED Equation.2  ���for all � EMBED Equation.2  ���


then n is prime.   





In these notes I will not prove any of the last three theorems (Lehmer, Selfridge, nor Pocklington), but will prove the following theorem of Proth (1878):





Proth’s Theorem� (in its original form, 1878). Let � EMBED Equation.2  ���where � EMBED Equation.2  ���and�� EMBED Equation.2  ���Suppose there is an � EMBED Equation.2  ���such that� EMBED Equation.2  ��� then n is prime.


Comment. This is the original formulation of Proth’s theorem, and the standard proof of it (which makes an argument which eventually depends on an appeal to Lucas’ 1876 theorem) is a little awkward. In February 1999 I improved the ‘� EMBED Equation.2  ���’ condition (whose use in the standard proof is very artificial) to this:





 Proth’s Theorem (in its original form, 1878). Let � EMBED Equation.2  ���where � EMBED Equation.2  ���and � EMBED Equation.2  ��� Suppose there is an � EMBED Equation.2  ���such that� EMBED Equation.2  ��� then n is prime.





Proof�. First, note the standard result� about prime divisors of the ‘generalised’ Fermat numbers�: let x be any integer and m any non-negative integer, then every odd prime divisor q of � EMBED Equation.2  ��� satisfies � EMBED Equation.2  ��� Now, let p be any prime divisor of n, then � EMBED Equation.2  ���and so� EMBED Equation.2  ���Thus, if n is composite, n will be the product of at least two primes each of which has minimum value� EMBED Equation.2  ���and then it follows� EMBED Equation.2  ���


Thus � EMBED Equation.2  ���and then dividing by � EMBED Equation.2  ���gives � EMBED Equation.2  ���That, however, is incompatible with � EMBED Equation.2  ���Thus n is prime. [end of proof]


__________





Second year work from page two of these notes:





Theorem. Let � EMBED Equation.2  ���such that � EMBED Equation.2  ���then � EMBED Equation.2  ���


Proof. Since� EMBED Equation.2  ���then� EMBED Equation.2  ���for some� EMBED Equation.2  ���Also, since� EMBED Equation.2  ���then - 


by the Euclidean Algorithm - we have� EMBED Equation.2  ��� for some� EMBED Equation.2  ��� Thus


� EMBED Equation.2  ���and so� EMBED Equation.2  ��� Then� EMBED Equation.2  ���and so � EMBED Equation.2  ���and therefore� EMBED Equation.2  ��� since� EMBED Equation.2  ���





Theorem. Let � EMBED Equation.2  ���then� EMBED Equation.2  ���





Proof. Suppose � EMBED Equation.2  ���for some � EMBED Equation.2  ���then some prime p divides d, and so � EMBED Equation.2  ��� Thus� EMBED Equation.2  ���(because a prime dividing a product of integers must divide at least one of those integers) and� EMBED Equation.2  ��� That, however, conflicts with � EMBED Equation.2  ���and so we must have� EMBED Equation.2  ���


__________











� In these notes only the Lucas (1876) and Proth (1878) theorems will be proved.


� Another trivial case is� EMBED Equation.2  ���


� Proofs of these two results are given at t
