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General Introduction 
 
Dublin City University has founded, in collaboration with the Centre for Talented 
Youth at the John Hopkins University in the U.S.A, the ‘Irish Centre for Talented 
Youth’, whose aim is to cater for the needs of young people with an identified 
mathematical/scientific/other talent. 
 
In July ‘93 the D.C.U. Centre launched its first Summer programme, of three weeks 
duration, which was attended by about 180 young people (attendance was determined 
by performance in the Scholastic Aptitude Test, the most widely used test of college 
entry in the U.S.A.) from Ireland and the U.S.A., taking courses in Drama, 
International Affairs, Bio–Technology, Archaeology, Media and Communications, 
Computers, Mathematical Models and ‘Investigational Mathematics’. 
 
There were 31 students, all from Ireland, studying mathematics. They were divided 
into two groups (according to their SAT scores); one, a group of 15, was taught by a 
highly experienced and enthusiastic secondary school teacher (assisted by a former 
student of his) called Martin Hilliard; the other group of 16 was tutored by myself for 
the first week (and one day in the final week), and by Professor Alastair Wood (Head 
of the School of Mathematics in DCU) and a former student of his, Dr. Fiona 
Lawless, for the second and third weeks. 
 
My group and I met every day for five hours; three hours every morning (with two 
brief breaks) and immediately after lunch for two hours (with one short break). My 
group consisted of three girls and thirteen boys, and they came from all corners of 
Ireland. One was aged 12, three aged 13, five aged 14, six aged 15 and one aged 16, 
and only one had started the ‘Leaving Certificate’ programme in Secondary (High) 
School. As to the number of years of secondary schooling they had completed, four 
had completed 1 year, six 2 years, two 3 years and four 4 years. 
 
They were a perfectly normal group of individuals, only unusual in that they were (by 
and large) possessed of a passion for learning – (a D.C.U. Mathematics postgraduate 
student, Shane O’Dowdall, sat in on almost all of my classes with them, acting as my 
diarist. On our first morning, after three and a half hours of solid work, during which 
we had only had one short break, he had to call my attention to the time and suggest 
we take a break for lunch. As one of my own teachers used to say, “how quickly time 
flies when one is thoroughly enjoying one’s self!”) – and working with them has been 
one of the most, if not the most, satisfying experiences of my twenty five years of 
attempting to teach Mathematics. 
 
It would not be possible to record everything that passed between us, and so in this 
report I wish only to record some of the early work that they produced, before finally 
describing what I consider to be the most substantial body of work that we managed 
to produce together. I have chosen only that early work which relates directly to the 
latter. 
 
My ideal reader of this report is a mathematician with an interest in teaching, but I 
would also wish it to be of interest to non–mathematicians, especially those who 
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mistakenly think that Mathematics is all about unmotivated formulae. I have had the 
latter very much in mind writing this report. 
 
Mathematical Introduction 
 
When I first met my group I stressed that the work I hoped to do with them – 
‘Elementary’ Number Theory (whose deceptively simple sounding questions have 
attracted the attention of some of the greatest mathematicians (Euclid, Fermat, Euler, 
Lagrange, Gauss, …), but which, regrettably, doesn’t form part of their mathematical 
education in school) would not require that they had already covered a certain body of 
mathematical work; and thus they wouldn’t need to know anything about, for 
example, trigonometry, co-ordinate geometry, Calculus,… ; they would only need to 
be able to add, subtract, multiply and divide, have innate mathematical ability, and be 
interested in thinking about mathematical questions. 
 
I also said that I would avoid the use of jargon and would use only simple language 
(of course I intended to expand their mathematical vocabulary, but only when the 
need for it arose in a natural way). Most importantly I told them that they would not 
be passive learners of Mathematics (any fears that I might have had about that were 
very quickly dispelled!), that the way in which I hoped to make progress was not to 
set about teaching them anything specific, but rather to ask them some questions, see 
how they coped with them, and see where we got to. In my wildest dreams I could not 
have imagined that they would come up with as much as they did. Of course I will 
record their weaknesses as well as their strengths, though the latter completely 
outweigh the former. 
 
I will only record at this early stage (without giving too much away) that some of 
them managed to discover for themselves the classic proofs of the irrationality of 
numbers like KK ,4,3,2,,6,5,3,2 333 , etc.; also the structural connections 
(with proofs, after some initial help) between what I call ‘L–’and ‘R–’ 
approximations (namely, the best possible left and right rational approximations) to 

2,  and corresponding results for other similarly endowed numbers: 
,26,17,13,10,5  3 that proof a ); ,37,29 K  has no L– approximations 

(and its extensions to other similar numbers: 
K,19,18,15,14,12,11,8,7,6 ); the connection (with proof) between 

the R–approximations to 3  (and similar results for other numbers which don’t have 
L–approximations, but which do have R–approximations). 
 
In the following, whenever I use a term or notation, the reader should understand that 
it had already been introduced in an earlier discussion which I have not described in 
this report. Finally, ‘JC’ stands for myself, ‘S’ for someone or several, and ‘RM’, 
‘EF’, etc. for individuals in my group. For the latter I give their full name when they 
make their first contribution. 
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An apology and explanation 
 
When I first sat down to type this report I did not realise that it would turn out to be as 
long as it proved to be. So, I apologise for its length and I ask a reader to accept this 
explanation: if I were to read such a report by a colleague from another country I 
would be most unhappy to read something like: “I asked them a series of questions as 
a result of which they managed to prove that various numbers like, 2 , 3  etc. were 
irrational and they also managed to prove results about best possible rational 
approximations to such numbers, etc., etc.” 
 
I would want to know: what questions were asked? Leading ones maybe? What kinds 
of responses were given? Also, it’s very pleasing to get good responses, but how were 
poor responses dealt with? How was new terminology introduced? It is my belief that 
I have answered these, and other questions in this report. 
 

Monday 12th July 1993 
 
JC: Does anyone know what an ‘abundant’ number is? Or a ‘deficient’ number? 

(No one knew; I didn’t expect that anyone would, and I continued:) Had anyone 
ever heard of a ‘perfect’ number? 

 
Richard Murphy: (a 15–year old boy who had been coached for, but not made it 
into, the Irish Olympiad team): A perfect number is a number whose factors add up to 
itself. 
 
JC: All of its factors? 
 
RM: No, not all of them; all of them apart from the number itself. 
 
JC: Good. Can you give me an example? 
 
RM: Twenty eight; its factors are one, two, four, seven, fourteen and twenty–eight, 

and one, two, four, seven, and fourteen add up to twenty–eight. 
 
JC: If I let out that ‘abundant’ and ‘deficient’ had something to do with ‘perfect’, 

what do you think they might mean? 
 
S: ‘Abundant’ means the sum of all the factors (excluding the number itself) is 

more than the number; ‘deficient’ means less. 
 
JC: Good. Can you give me some examples? 
 

S: 
 12 is abundant,  factors are: 1, 2, 3, 4, 6, (12);
 14 is deficient,  factors are:   1,  2,  7,  (14);  

1 2 3 4 6 12
1 2 7 14

+ + + + >
+ + <

.
.  

 
Then completely out of the blue: 
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Elanor (correct spelling) Foley: (a 15–year old girl): Is every multiple of an 
abundant or deficient number also an abundant or deficient number? 
 
JC: What do you mean exactly? Do you mean what you have just said (and I 

repeated as above) or do you mean ‘is every multiple of an abundant number 
also abundant and every multiple of a deficient number also deficient?’ 

 
EF: I mean the last thing you said. 
 
JC: Is this true? 
 
They tried some abundant examples and it worked for those, and as no one could 
prove it always worked (it was only the first day, and they would not have been 
familiar with what constituted a ‘proof’ in Number Theory. They seemed to have an 
innate appreciation that this needed proving, unlike almost all of my own regular 
degree students who think that something is true if it is seen to ‘work’ without fail for 
several cases) I suggested that they think about it overnight. (A reader who is not 
familiar with this might like to try to prove it). 
 
(The next day R presented a proof – not perfect in its presentation – but which 
showed that he understood the essential idea. None of my own ‘third level’ students 
have ever been able to prove it for me, and even when I have illustrated the key idea 
for the particular case of all multiples of 21, none have ever been able to argue the 
general case). 
 
JC: What about the deficient case? 
 
S: 14 is deficient and 2 time 14 is 28, is perfect. 
 14 is deficient and 3 times 14 is 42, is abundant (checked). 
 The same for 4, 5 and 6 times 14 (checked). 
 
JC: Maybe they’re all abundant apart from 2 times 14? 
 
S: I think 14 squared is deficient. 
 
JC: Think or know? Have you checked it? Why ‘squared’? (As I was getting no 

response to these questions I just said:) OK Let’s check it. The factors of 
‘fourteen squared’ (written ) are what? 142

 
S: 1 and 196 (the ‘co-factor’ of 1), 2 and 96 (the co-factor of 2), 4 and 48… 
 
JC: (seeing and seizing a golden possibility): Why have you not said ‘3 and '’? How 

do you know that 3 isn’t a factor of 196? 
 
In asking such a question you have no idea if it will lead to anything or not. If 
someone had just said: “196 isn’t divisible by 3 because when you ‘divide 3 into 196’ 
you get a remainder of 1”, they would have been giving a factually correct reply, 
could have thought I was perhaps being a little pedantic, and it wouldn’t have led to 
anything in particular. 
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RM: 196 is not divisible by 3 because the sum of its digits is not divisible by 3. 
 
Off on a tangent: I was, of course, absolutely delighted to get such a reply. I asked if 
there were any of them for whom R’s reply meant something, and for some, but not 
all, it did. Because it had come up in this natural way, I decided to pursue the question 
of determining divisibility by digital considerations. I will not give a detailed account 
(as this is a very routine and elementary topic), and so I will only record the points 
that were discussed and emphasised: 
 
(i) That R’s (correct) reason was directly related to ‘base 10’ representation. 
 
(ii) That other rules obtained for divisibility by 2, 4, 5 and 8. 
(iii) That, for other bases, the rules already discovered for base 10 couldn’t be just 

changed without thought; that, for example, the rule that ‘a whole number is 
divisible by 2 if (and only if) its final digit (in a base) is divisible by 2’ isn’t true 
for any base. Rather it depends on the base; and so, for example, (1  
although divisible by 2, does not have final digit divisible by 2. 

7 9) ,

 
(iv) With regard to divisibility by 6, someone had (correctly) suggested that ‘a 

whole number is divisible by 6 if it is divisible by 2 and also by 3’, and I asked 
would it be correct to say, for example ‘a whole number is divisible by 10 if it is 
divisible by 2 and 5’ (I was told ‘yes’), and other variations of this. But how 
about, say, divisibility by 24? Would it be correct to say that a whole number is 
divisible by 24 if it is divisible by 4 and 6? They didn’t fall for that one (12 is 
divisible by 4 and 6, but not by 24; and other variations). So, how could they be 
so certain about the 6 case? 

 
Return to RM’s comment about 196: We eventually went back to 196 and found all 
of its factors (and they were able to say, for example, 5 is not a factor as the last digit 
is not 0 or 5, 6 is not a factor as 3 is not a factor, etc.): 1, 2, 4, 7, 14, 28, 49, 96, 196 
and so 196 is abundant since 1 2 4 7 14 28 49 96 201 196+ + + + + + + = > . 
 
So, we still hadn’t resolved the question about proper multiples of 14, that maybe, 
apart from 2 times 14, they are all abundant. Then, after our only break of that first 
morning: 
 
Bryan O’Higgins: (a 13–year old who had completed only one year at High/ 
Secondary school): I think I have an example where it’s deficient for 14. 
 
JC: Namely? 
 
BH:  11 times 14. 
 
We all found it’s factors, namely: 1, 2, 7, 11, 14, 22, 77, 154 and 154 is deficient 
since 1 2 7 11 14 22 77 135 154+ + + + + + = < . 
 
JS: Good! Now why did you pick on 11 times 14? Trial and error. 
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BH: I picked on ‘11’ because it was a prime, and it seemed to me that if I picked on 
a prime I would be able to keep down the number of factors and maybe get a 
deficient number. 

 
That (for his age) was an incredibly insightful (though not quite correct) remark! 
 
JC: What about other prime multiples of 14? (Remember we had already 

encountered 2 times 14, 3 times 14, and 5 times 14). What about 7 times 14? 
 
We collectively checked that it too is deficient. For a moment I considered posing this 
question: ‘could you prove that if p is any prime, and p p> 5 14then  deficient?’ but I 
was keen to explore potentially richer ideas and so proceeded: 
 
JC: It’s true that 196 is not divisible by 3 for the reason that RM gave, but I would 

like to put to you another reason for that, which is completely independent of 
‘base’ (this was one of the rare occasions that I decided to tell them something, 
as left on their own it almost certainly would not have occurred to any of them). 
Can anyone prove that if a whole number is not divisible by three, then the 
square of that whole number is not divisible by 3? And could anyone give an 
example to show that I couldn’t replace ‘3’ with a ‘4’ and still make the same 
claim? 

 
At first no one could prove the first claim, but I was given examples like: 4 does not 
divide 6 but 4 does divide 6 , 4 does not divide 10 but 4 does divide , etc. 2 102

 
Now I wish to jump ahead to the following day. 
 

Tuesday 13th July 1993 
 
Before I had time to draw breath: 
 
RM: I can prove that if a whole number is not divisible by 3 then it’s square is not 

divisible by 3, and that every multiple of an abundant number is abundant. 
 
I intend only reporting on the first of these, as it eventually leads to the main work 
that they produced. 
 
JC: Let’s take the first of those; how did you do it? 
 
RM: Using mods. 
 
Anyone familiar with congruences/modular arithmetic will realise that that’s what he 
had in mind (he had been coached on that in connection with preparation for the Irish 
Olympiad), but I wasn’t keen to have him talking about ‘mods’ and possibly mystify 
many in the class, especially the younger ones. I preferred instead to try to get him to 
use the simpler and more familiar language of remainders on division by 3, so I 
proceeded: 
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JC: I know what you mean, but the language of ‘mods’ is perhaps not familiar to 
everyone. I wonder if you could perhaps strip away the jargon of ‘mods’ and 
give me your solution, but expressed in simpler, more familiar language? My 
own personal preference is not to use technical, possibly unfamiliar terms, when 
simpler terms are available? 

 
RM: (He had absolutely the correct idea, and it was only a case of my using a 

guiding hand to express it, using notation already established in class, as 
follows:) 

 

 

Claim:   If  and  then 
Proof:    Since  then  or  for some 
             Then  or ,  and so
              or  and thus
              some  Thus 

2

b b b
b b n b n n

b n n b n n
b n n b n n
b B B b

∈ / /
/ = + = + ∈

= + + = + +

= + + = + + +

= + ∈ /

Ζ
Ζ

Ζ

3 3
3 3 1 3 2

9 6 1 9 12 4
3 3 2 1 3 3 4 1 1
3 1 3

2

2 2 2 2

2 2 2

2 2

| | .
| .

( ) ( ) ,
, . | .

 

 
JC: Good. I hope everyone sees that it’s really quite simple. It’s just a case of 

looking at the integer you have, dividing it by 3, seeing what the remainder is 
(and we had already had a discussion about the meaning of ‘remainder’; that if, 
for example, one wrote: 29 38 5= +. , one could say that 29 leaves remainder 5 
on division by 3, but that by rewriting: 29 38 3 2 3 8 1 2 39 2= + + = + + = +. .( ) .

| ?

, 
then more naturally, 29 leaves remainder 2 on division by 3) and then seeing 
how that influences the remainder that its square leaves on division by 3. 
(pause). Now, I wonder if you can tell me some other numbers which behave 
like three? 

 
They quickly gave me examples of ones that behave like 3 (2, 3, 5, 6, 7) and one’s 
that don’t {4 (already known), 8, 9}. Then: 
 
JC: (wrote on board:) Which values of a have/don’t have the property that 

whenever a b  a b a b, | ,∈ / /Ζ and  then 2

 Have the ‘property’: 2, 3, 5, 6, 7, 10.  
 Don’t have the property: 4, 8, 9. 
 
EF: I think that multiples of four don’t have the property. 
 
JC: Good! So the ‘don’t have’ list might look like this?: 
 4, 8, 9,   12,   16,   20,   … 
 How can you express your guess? 
 
EF: Four m. 
 
JC: How can you prove it? 
 
EF: Take b to be the half of a. 
 
JC: Good! I’d like to write up a formal proof (and wrote). 
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property.  thehave   so and | Thus                                  
...44)2(But then                                   

.2|4 since | then ,2Let                         :Proof
property’.‘ t thehasn’ 4 , allFor  :nObservatio Simple

2

222

tdoesn'aba
mammmmb

aabamb
mam

====

//=
=Ν∈

 

 
JC: Can anyone think of any other values which don’t have the property? 
 
BH: Multiples of nine. 
 
JC: Good! Now would everyone please put their name at the top of a piece of paper 

and write up for me a proof that multiples of 9 don’t have this property, and 
hand it up to me as I would like to read it later. 

 
I allowed only about two minutes for everyone to do this. I didn’t want to use up 
valuable class time by looking at their work then; I put it aside to look at that evening. 
I will only comment briefly on their efforts (I will send photocopies of their work to 
anyone who is seriously interested, with the students’ names hidden to respect their 
privacy): one of them didn’t know what to do, one offered as a proof the mere 
verification of a single example (“e.g. a x= = =18 6 36 182,  ), one made a correct 
choice for ‘b’ but then went astray, one initially took ‘b’ to be 4½m, then changed it 
to 9m and got nowhere, one just wrote that a m a m= =9 9gave 81  and made no 
choice of an appropriate ‘b’, but the other eleven (including all four who had 
completed only one year at secondary/high school) gave correct or essentially correct 
proofs. I will just record the work of one of the latter, a 13–year old girl (Roisín 
Loughran, with only one year of secondary schooling completed): 
 

.| i.e. .,)(99)3(             
| then ,3Let    :Proof

2222 baammmmmb but
bamb

==+=

/=
 

 
One might quibble that she hadn’t ‘∈ N’ in appropriate places, but that really would 
be a bit pedantic (I remarked on that when I later had an opportunity to speak with her 
about her work). 
 
When I had collected their work I invited a proof from whoever could provide one, 
and after a discussion {during which it emerged that besides the choice of 3m for ‘b’, 
one could also choose – though there would be no need to do so – other numbers like 
6m, 12m, 15m, 21m, … (but not 9m, 18m, 27m, …) for ‘b’} I wrote up a proof 
modelled on the ‘4m’ case above. As soon as I had finished: 
 
BH: I think that any number that’s a multiple of a square doesn’t have the ‘property’. 
 
JC: So, six doesn’t have the property because six is ‘a multiple of a square’, namely 

six is six times one squared? 
 
BH: (protesting): No, no; the square has to be bigger than one. 
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JC: That’s right! You see how careful you must be when you are making 
mathematical statements. So, can you all prove the following for me (wrote on 
board:) 

 
Simple observation: Let such that aΝ∈a ,ms= where  Ν∈m and s is a square 

with 
,1>s then s will not have the ‘property’. 

 
I deliberately wrote it like this as I was curious to see how many, if any, would be 
sensitive enough to write in their proof something like: Let s S S= ∈2 ,  where  Ν  and 
S > 1. 
 
Once more I will comment briefly on their efforts: the five who hadn’t been able to 
handle the ‘9m’ case didn’t appear to benefit from the above discussion (one started 
with “a a m a b nc b ac ac b ac b= = > = = =2 2 4 1 3 42, . . , , | ,   = is a square.     

6 9/|  but 
|

|

| ).

= 1

”, another 
took ‘b’ to be 4sm…, another just took a to be 9 and wrote that 9 …) and 
many of the others now had difficulties. 

62

 
The best effort (RM’s) was this: 
 
Proof:   Let ,  then 
            Let  then  (provided  as if   and 
             and so ,  and so  does not have the property.

s t a t m
b tm a b b b a b m a b

b t m a b a

= =
= / > = = =

=

2 2

2 2 2 2

1 1
.

, | ,
|

 

 
His “provided b ” was, of course – as I had determined from speaking 
with him about it subsequently – an error made in the heat of the moment; in both 
places ‘b’ should, of course, be ‘t’. 

b> 1 as if 

 
Another good effort came from a 16–year old girl (Clare Kelliher, and the only one 
in the group who had started the Leaving Certificate programme) who wrote: 
 
Proof:    Let  then  

            but  because  i.e.  

a sm b s m a b sm s m

a b b s m sm a b sm sm

= = / /

= = =

. .( ), | ( | ( ))

| , ( ( )) . | | .2 2 2
 

 
The minor faults are obvious, but her use of ‘ s m.( )’ showed sensitivity and 
understanding (another student had chosen ‘b’ to be ‘ (sm) ’ throughout – how often 
does one have to comment to one’s students: “be careful with bracketing!”) 
 
We had some further discussion about this ‘property’, particularly with regard to the 
more difficult part of it, namely, which numbers have the property. I will only record 
that they were acute enough to explicitly state that those numbers which have the 
property are precisely those which are not multiples of squares which are larger than 
one (I regret that I didn’t introduce the standard term ‘square-free’). 
 

__________ 
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Later, at the end of the afternoon session, I asked each of them to write their name on 
a piece of paper and tell me their age, how many years of schooling they had had, and 
let me know how they had found the work so far. I was, of course, going to give more 
credence to someone who told me they were having difficulties, then to someone who 
maybe said they found it all too easy, when perhaps there was no evidence for that. 
My offer concerning photocopies also applies to these responses, but I will just briefly 
list a range of them here: 
 
“I find it sometimes hard to understand the proofs in class, but I can understand them 
better later… I am enjoying the course and the method of teaching.” (a 14–year old) 
 
“The thing I find difficult are writing proofs. I think everything else is fairly easy.” (a 
15–year old) 
 
“The question of the ‘property’ was the hardest so far and I found it fascinating.” (a 
15–year old) 
 
“What I find difficult is writing out proofs.” (a 14–year old) 
 
“I have found the work both interesting and definitely challenging having never come 
into contact with number theory before. I am enjoying the new subject and feel that I 
am coping adequately. The idea of proving an argument explicitly is also new and is 
perhaps the most difficult area. But I have enjoyed learning the technique.” (a 15–
year old) 
 
“It is the first time I have done proofs of this sort so it was hard at first to understand 
but I am beginning to now.” (a 14–year old) 
 

Wednesday 14th July 1993 
 
I was keen to see how they would cope with ‘irrational numbers’, but I didn’t give 
any indication that this was my aim. Having asked if they all know what ‘square root’ 
means, and tested that they did know by asking them to tell me the values of 

9 4 2 25, , . , etc., I proceeded: 
 
JC: Would you tell me the value that your calculators display for 7 ? (I will 

explain later why I quite deliberately choose 7 2 rather than,  say,  ). 
 
S: (and I displayed on the board): 7 2 645751311= . . 
 
JC: Could that be the exact value of 7 15, . just as  is the exact value of 2 25.  and 

if it isn’t, might it be that if we had a more accurate calculator or computer, then 
maybe by going out to – say – 50 decimal places we might get the exact value? 
I’m really asking if the square root of seven has a decimal expression which 
comes to an end. 
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After some moments, during which it seemed that at least one of the group thought 
that the above displayed value was the exact value (simply because that was the value 
churned out by the calculator), I got this contribution: 
 
RM: The square root of seven doesn’t have a decimal value that ends. (I asked why, 

and he continued:) Well if it did and ended in a one then its square would end in 
a one and so wouldn’t be seven, and if it ended in a two it’s square would end in 
a four. 

 
I quickly intervened at that point and picked out individuals in the group and asked: 
“and if it ended in a three, four, five, … , its square would end in what?” I got correct 
replies from those I asked, apart from one who couldn’t tell me in the case of ‘six’. So 
we had a proof (of course I praised RM for coming up with the idea) – not formally 
written up – that 7  doesn’t have, what I deliberately called, a ‘terminating decimal 
expansion’. I mentioned that numbers that have terminating decimal expansions are 
just ‘rational numbers’ (of course I stated precisely what that meant: a number is 
rational if it can be expressed as the ration of two whole numbers, or, as is more 
commonly called by mathematicians ‘integers’) whose denominators happen to be 1, 
10, 100, 1000 etc.; in other words just ‘powers of ten’, and whose numerators happen 
to be whole numbers. Then:  
 
JC: Might it be possible for there to be a rational number which was the exact value 

of the square root of seven? 
 
[Aside: I had deliberately picked on 7 rather than ,2 because I was concerned that 
someone in the class might have already heard of, or been coached in, ‘irrational 
numbers’; and if so then it would have been most likely that it would have been 2  
(how many undergraduate students of Mathematics are there who, if they have 
encountered irrational numbers at all, have only met the one example ?). Of 
course, had that been so, I would have been disappointed in them if they didn’t then 
just say: “

2

2  is an irrational number and the proof of that can be easily altered to 
show that 7  is also an irrational number”.] 
 
JC: Would you please use your calculators to tell me the decimal values of the 

rational numbers 32257
12192

514088
194307 and  (I had worked these out in advance and had 

memorised them so that they didn’t think that I was up to something if they saw 
me consult a piece of paper, and I wrote them up on the board, just under the 
already displayed approximate value of 7 ). When they called out the 
calculator values there was now displayed on the board: 

 
                    

   
 

32257
12192

514088

7 2 645751311
2 645751312
2 645751311194307

=

=

=

.

.

.

K

K

K

 

 
I think that most of them were impressed with these. The middle one isn’t 7  – if one 
is to believe one’s calculator [later I spoke about the question of being careful about 
not putting too much faith in one’s calculator, to always be thinking about what might 
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be going on behind the scenes when one did a calculation. The most dramatic 
example I gave – which genuinely impressed them – was in connection with verifying 
Euler’s demonstration that the sixth Fermat number, namely F5 = +232 ,

)3

1  which we 
had encountered in another earlier discussion – not recorded in this report – is 
divisible by 641. An 8–digit calculator will not only ‘show’ that 641 divides (2 ) 
but (absurdly) that each of (

132 +
), , ( ) (2 1 2 2 2 232 32 32 32− + +   and  are divisible by 641 

as well]. 

7 514088
194307 and 

b
a=7 ?

7
,

,80782114243 =

 
JC: So, there we have two rational numbers, and one of them is quite close in value 

to , and the other is even closer. Is the last one so close that it might in fact 
be equal to

7
7 ? Or maybe if we had a calculator with more than ten digit 

display and we re-calculated then we would find that they agreed 
on one more decimal place, but then differed on the next place? And so would 
not be equal. What I am really asking you is this: are there or aren’t there 
integers a and b such that  

 
For the first time I had asked a question that met with no response, and after allowing 
some time to pass I continued: 
 
JC: I don’t wish to only ask this sort of question for , but also for other numbers 

like 2 3 5 6, , , ,  etc.  To take the first of thes 2e,  would you tell me your 
calculator values for 2 47321

33461 80782,  and 114243 ? 
 
 The following were then displayed: 
 

2 1414213562
1414213562
1414213562

47321
33461

80782

=

=

=

.

.

.

K

K

K 114243

 

 
JC: Might 2  be equal to one (or maybe both) of these rational numbers – the same 

kind of question as we were considering earlier – and, while we’re at it, how 
about these two rational numbers? Are they or aren’t they equal? 

 
I got no contribution on the first question (and I should record that one of them 
thought these three numbers were all equal just because their calculator values 
agreed), but on the second: 
 
RM: The two rational numbers couldn’t be equal, because if they were then: 
  

. and .3346147321 then say), s(let’ 80782
114243

33461
47321 aaa ===  

 
and from the first of these we get that a’s decimal expansion must end in a ‘1’, 
and that contradicts the other equation which would make 80782.a end in a ‘2’, 
whereas it ends in a ‘3’. 

 
JC: That seems like a good argument. Who accepts that? 
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ALL: We do. 
 
JC: Well I certainly don’t! R’s argument only seems to be OK, but it has a big flaw 

in it – it rather takes for granted that a’s decimal expansion has a last digit, and 
I’m sure you can all give me some rational numbers whose decimal expansions 
don’t terminate. 

 
S: 1

3 0 333 0166 0142857= = =. , . , .K K  (JC:)  (repeat).1
6

1
7  

 
EF: But wouldn’t R’s argument work if you said let’s take the last decimal digit of a 

at infinity? 
 
I then embarked on a long monologue in which I tried to explain that there was no 
(meaningful) such thing as ‘the last decimal digit of a at infinity’ {if there was such 
an object, what would come just before it? What would it be called? The (infinity 
minus–one)th place? And the one before that? The (infinity minus–two)th place? And 
just before that?… and where would the ‘join’ be between these places. I suggested 
that it would be like trying to link two trains together, one of which had a first coach, 
a second coach, …, but no last coach, and the other one having a last coach, a second 
last coach,… , but no first coach}, at the end of which: 
 
JC: Come on, surely someone can show me that 47321

33461
114243
80782 and are equal or show 

me that they aren’t. 
 
Richard O’Callaghan: (a 15–year old boy who had completed three years at 
Secondary school): I think they’re not equal. (JC: Why?). 
 
RC: Because if they were, and you then subtracted them from each other you would 

get 0. (JC: So?) Well you would have (written on the board:) 
 

114243
80782

47321
33461 0− = . (JC: and?) 

 
RC: Well if you then made a common denominator and carried out the subtraction, 

the numerator would be 114243 times 33461 minus 80782 times 47321, and 
that ends in a 1, so the difference couldn’t be 0. 

 
JC: Wonderful! At long last! (There was a great sense of relief in the class and some 

called out “Well done Robert!”). In fact not only does the numerator end in 1, 
but you are in for a big surprise! Calculate 114243 time 33461 minus 80782 
times 47321 and see what you get! 

 
ALL: (after a few moments calculation): It comes to just 1! 
 
JC: Isn’t that wonderful? So, these two rational numbers aren’t equal, but they are 

incredibly close together, differing only by the tiny amount 1
80782 times 33461. 

But now I would like to say this to you: Robert’s proof is just perfect, but it can 
be more briefly expressed. How? 
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RC: Oh yes! Just cross multiply! 
 
JC: Simple isn’t it! Why didn’t you say that ages ago? 
 
We were just coming to the end of that third day’s work and it was a great relief that 
someone had been able to come up with something, as I would have hated to have had 
to point out a reason myself. 
 
JC: Now the question I would like you to think about overnight is simply this: are 

there or aren’t there integers a and b such that 2 = a
b ? And the same question 

for other numbers like 3 5 6, , , etc. 
 
Some written comments at the end of that day. 
 
“I didn’t understand how to get the answer to the question: ‘do there exist a b  N 
such that

, ∈
7 = a

b ?’, but I was fascinated by the way you could form a fraction to be 
equal to the 2  (JC comment: obviously some misunderstanding there), and I hope 
we will soon be also able to do this.” (a 14–year old) 
 
“I feel myself compelled to argue against the frustration encountered regarding 
why 114243

80782
47321
33461 and  are not equal.” (a 15–year old) 

 
(JC comment: When the class was over I was talking with some of them about that 
very point, and I said that I could so easily have cut the whole thing short in class by 
saying: “Look, you’re stuck, I’ll tell you. Suppose they were equal; then cross 
multiplying you get two whole numbers equal to each other; but one of them ends in a 
3, the other in a 2; that’s impossible, so the two original numbers couldn’t be equal. 
But I decided to let it run since I was getting some contributions. Those contributions 
were in error, but in my considered view a most important part of one’s mathematical 
education is not just encountering arguments that ‘work’ but also ones that don’t, and 
knowing why they don’t work.” Looking at those young faces, as I was saying that,  
I formed the impression that they understood why I had done what I had done, and as 
a teacher I could hardly ask for more.) 
 
“It is difficult to understand the infinite decimal numbers and finding the square root 
of numbers other than squares of whole numbers.” (a 14–year old) 
 
“I found what we did today very interesting, and I was fascinated by the way the 
fractions were created. I eagerly anticipate when we are also able to form fractions, 
e.g. 47321

33461 2 equal to  (JC comment: once again an apparent misunderstanding).” (a 
14–year old) 
 

 
 

Thursday 15th July 2003 
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Each day has its own rewards and excitements – if the latter hasn’t come across it’s 
because I’m no playwright! – but for me it was the last two days of the first week, and 
the extra day that I had in the third week, which were so thrilling. They produced so 
much work of real value in such a short time, at times at breakneck speed. As soon as 
we started: 
 
BH: You can’t have b

a=2 for integers a and b – (JC: why not?) – because if you 

did then you would get b  and that is impossible. (JC: why?) Because . 2 2  
doesn’t have a terminating decimal expansion, and you can’t have a number 
which doesn’t have a terminating decimal expansion (here 2 ) being multiplied 
by a whole number (here b) and get a whole number (here a) 

 
I was so taken aback with this ‘reason’ that instead of asking the rest of the class what 
they thought of this, I just blurted out: 
 
JC: No! no!, no! Not at all! If you take a number like, for example, 1

6 ; it doesn’t 
have a terminating decimal expansion: 1

6 =.166666K; but if you multiply it by, 
for example, the whole number 12 you get the whole number 2. So your reason 
is just not acceptable. Yes? (He agreed.) Who can give me other similar 
examples? 

 I was given several examples and then: 
 
RM: I don’t think you can have integers a and b such that . equals 2 b

a  (JC: why 
not?) Well if you did then a would be even (JC: why?) 

 
RC: (jumping in) Because 2  has the ‘property’. 
 
JC: Good, good, I think I know what you mean, but can you just explain a bit more? 
 
RC: Well, from b a  and so 2 would have to divide a 

as 2 divides a . 
b. 2 2=  you would get 

2
a.2 2=

 
JC: That’s good. I’d like to write that up in text book fashion (and I wrote on the 

board:) 
 

.|2 that bemust it  |2when 
 thathave  weand ,' somefor  1,0'2 have  we

 somefor  1,02 sinceBut then  .|2 so and ,=2.                                  

have  weso and 2. then ,2 with ,Let            :Proof Formal

even. bemust number  rational that ofr denominato                                 
 then the,2 equalsch number whi rational a is  thereIf :nObservatio Simple

2

2

222

aa
AAaA

Aaaab

abba b
a

Ζ∈+=Ζ∈

+=

==Ζ∈
 

 
(and wishing to take some initiative myself, but at the same time not give too much 
away, I continued:) So, if you have a rational number a

b  which equals 2  then the 
numerator, a, has to be even. It has no choice in the matter; it simply has to be even. 
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Yesterday we looked at the rational numbers 47321
33461

114243
80782 and , and we were wondering 

which, if any of them, might be equal to 2 ; now we can see at a glance that neither 
of them could possible be 2 . Why is that? 
 
S: Because the two denominators are odd. 
 
JC: Exactly. If you have a rational number, and its numerator happens to be odd 

then it couldn’t possibly be 2 2.  It might be very close to  but it couldn’t be 
2 . (pause). Now suppose you made slight alterations to the numerators of the 

above rational numbers to make new ones, but now with even numerators; let’s 
say we alter the one that ends in a 1 by just changing the 1 to a 2, and alter the 
one that ends in a 3 by just changing the 3 to a 2. Now, you recalculate and 
compare with 2 . 

 
 There was now displayed on the board: 
 

2 1414213562
1414243488
1414201183

47322
33461

80782

=

=

=

.

.

.

K

K

K 114242

 

 
JC: You see. Decent enough approximations. Not as good as those we’ve already 

seen. Certainly not equality. Incidentally, without using our calculators, how 
could we have told that these two rational numbers couldn’t have been equal? 

 
S: (yelled out): Cross multiply! 
 
JC: Good; at least you’ve learned something! Of course it’s only because of the 

endings being right. Now, Richard, you were telling me a while ago that ‘a’ 
would have to be even. You were going to tell me something else? 

 
RM: The ‘b’ would have to be even also – (JC: Why?) – because (and I just wrote up 

on the board what he told me:) 
 

with  then  and so  is even.b a A A b A b2 2 2 2 2 22 2 4 2. ( ) ,= = = =  
 
JC: Good. And so if you were looking for a rational number which was equal to 2  

then we would know that its numerator would have to be even – and so a 
rational number like, for example, 47321

33461 2,  couldn’ t possible be  as its numer-
ator is odd – and if you went and altered it slightly and formed the rational 
number 47322

33461 to make an even numerator so as to at least give it a chance of 
being equal to 2 , that would also fall flat because of Richard’s second 
observation, namely: if a rational number is equal to 2  then the denominator 
of that rational number must also be even. So maybe if we made another 
alteration and formed, say 47322

33462 2,  it might equal . We couldn’t immediately 
rule it out since now both numerator and denominator are even. (pause). 
Quickly, use your calculators to see if it is 2 . (Then was displayed:) 
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 47322
33462 1414201183 2 1414213562= = =. ( .K K)  

 
JC: So, not equality. You’ve used your calculators to show that though. Suppose I 

picked the rational number 19606
13862

19601
13860(just a double alternative to , already 

displayed on the board having the value 1414213564 2 1414213562. ( .= = K) ; 
could you tell me if that is equal to 2  or not but without using your 
calculators. Pen and paper and everyone working on their own. 

 
I allowed some minutes before collecting their work, which I will briefly record. 
 
Their written responses to the question: is/isn’t the rational number 13862

19606  equal 

to 2 ? 
 
• Three of them handed in very poor work; just to give one example: “This is not 

true, because when 13862 was 13861 looked like it might have been equal to 2 , 
but now that the number has changed it has changed the answer of the division. It 
should no longer even look like 2 .” 
 

• Four of them calculated – by long hand multiplication – the values of  
 and remarked that these were not equal, and so

196062

and 2138622. , 19606
13862 could not equal 

2 . 
 

• Three remarked that  ends in a 6, that 2  ends in an 8, and thus 
that

196062 138622.
19606
13862  could not be 2. 

 
• The remaining six gave quite perfect reasons (‘perfect’ because they went right to 

the heart of the matter, and found for themselves, without any hint whatever from 
me, the key to proving – given what has already been done – that 2  is an 
irrational number) for the rational number 19606

13862 2 not being equal to . As four of 
these six (EF, RM, BH and CK) have already figured in this report so far, I would 
like to record in complete detail the work of the other two. 

 
Eoin Bambury (a 14–year old boy who had completed two years at secondary 
school) 
 
“Is ? 19606

13862 = 2
 
No. This rational number cannot be equal to the 2 , because when you divide top 
and bottom by two you get 9803

6931 . Here the numerator and denominator are both odd. 
This cannot possibly be the square root of 2 and we have already proven that for a 
rational number to be the 2 , both numerator and denominator must be even.” (JC 
comment: One might be pedantic and quibble with this, but it is quite clear that he 
understands.) 
Kenneth Kearney (a 13–year old boy who had completed only one year at secondary 
school, and the one who had written at the end of the second day: “found maths hard 
at the start but I am gradually finding it easier”, and at the end of the third: “I think I 
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understood most stuff, but I am having a little difficulty in proving theories. But, 
thankfully, I am beginning to understand.”) wrote: 
 
“ QUESTION: Is .2 13862

19606=  
 
EXPLANATION: .6901

9803
13862
19606 =  13862

19606  is not equal to 2 because when you simplify it 
down to 6931

9803  which is equal to ,13862
19606 when you square ,6931

9803 you can’t get 2 because 
the numerator and denominator are both odd. 
 
PROOF: ,6931

9803
13862
19606 = .26931

9803 ≠  .2 13862
19606 ≠∴  ” [end of student quote] 

 
I collected the work from them there and then, and asked who could settle the 
question that they had just been writing about. By discussion it was clear that the key 
thing to do was to ‘reduce’, and, if need be, to repeatedly reduce by a succession of 
division by 2 (obviously those who had already thought of this for themselves hardly 
needed telling). 
 
Diversion The reader who is acquainted with the elementary first steps of the theory 
of irrational numbers can imagine how delighted I was at that point. Many of them – 
not realising (How could they? It was not in their vocabulary) that they had done so – 
had, by their own efforts, made up a proof that 2  is an irrational number. 
 
Some of my readers might claim that this was only possible with such a group of 
students, and that the approach I have described above would not work with one’s 
own regular students. I would agree with them, as I have tried it and I’ve had no 
success. 
 
[With my own students I would have to let out that 2  is indeed an irrational number, 
and ask if they can come up with a proof of that (and the general observation that it is 
easier to settle something – when you know the outcome – comes into play). They 
can’t, but a question like: “I wonder if any of you can find a reason – apart from just 
slogging it out – why the number ( )9803

6931
2  is not equal to 2?”, usually leads, with a bit 

of effort, to a proof that 2  is irrational. Is this effort worth it? Well I often ask that, 
and I suppose I feel in my heart of hearts that it isn’t, but the alternative – simply 
telling one’s students everything and having them promptly forget it – is just too 
awful to contemplate.] 
 
Return to Report.  Up to that point I had deliberately not used the term ‘irrational 
number’, but now I did, and I gave them a potted history: that in early Greek 
Mathematics it was believed that all numbers were ‘rational’, and made some obvious 
points concerning the reasonableness of that belief; but that about the time of 
Pythagoras this belief fell apart. Their showing – the work of my group – that 2  was 
not a rational number, was a path that had been gone over many times by generations 
of mathematicians. I told them that a great mathematical hero of mine – G.H. Hardy – 
wrote in his ‘A Mathematician’s Apology’ that he considered the Greek proof of the 
irrationality of 2  (together with Euclid’s proof of the infinitude of primes) to be one 
of the finest pieces of classical Mathematics to have come down to us. 
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By way of giving them some idea that there were great unsolved questions in 
connections with 2 , I told them that when I was a post–graduate student in London 
I attended a course by a very renowned mathematician – perhaps I should keep his 
identity a secret! – and that once, in conversation, some of us had asked him which 
question in Mathematics he would most love to settle; well, there were many, but if 
pressed to name just one of them it would be to know the decimal expansion of 2 . I 
said that he didn’t just mean being able to actually calculate its expansion to any 
degree of accuracy – a completely trivial problem which I discussed with them – but 
rather be able to find some non–trivial way of telling what the nth decimal place in the 
expansion of 2  would be. 
 
Thus, while 1

7 has decimal expansion .  (repeat), and so the n142857 th place of the 
decimal expansion of 1

7 is completely determined by the remainder that n leaves on 
division by 6 (and I got correct answers to a few questions like: “what is the one 
hundred and twenty fourth place in the decimal expansion of one seventh?”), no such 
simple deterministic solution is known in the case of 2 , nor for that matter for any 
(what I called) naturally occurring irrational number. {One can, of course, construct 
irrational numbers like 0.12345678910111213… which is easily seen to be irrational, 
and with a little effort can be seen (D. Champernowe, 1933) to be “normal in the base 
ten” (see [1]), and is not just irrational, but is in fact – as Kurt Mahler proved in 1937 
– transcendental.} 
 
I mentioned that whereas most people probable regard 2  as somehow being the first 
irrational number – almost certainly the first encountered in study – it could be said 
that a number called the ‘golden ratio’ was probably the first to actually be 
discovered. None had heard of this ration and so I spent some time describing how it 
arose; technically it boiled down to this: we sought two (positive) number L and l, 
with L l> , such that the ration of L to l was the same as 1 to ( L l− ). (I asked them to 
try to find rectangles with integral sides which are ‘almost golden’, so ones with sides 
like 13 and 8 (with long to short side ration 13 to 8 (=1.625) which leads to the 
smaller rectangle with new ratio 8 to 5 (=1.6) – these two ratios are close in value), 
but not ones with sides like 13 and 7 (with long to short side ratio 13 to 7 (=1.857…) 
leading to the smaller rectangle with new ratio 7 to 6 (=1.16…) – producing two 
ratios that are not close in value. I choose not to mention the Fibonacci numbers.) 
That led to the equation: 
 

),/(/ lLllL −=  and cross-multiplying gave   ,22 lLlL =−
which tidied up to  .0 22 =−− lLlL

 
Now, what to do with that? RM quickly observed that if you just took l to be one – 
and you could do that as it was the ration of L to 1 (and not L and l) that was of 
interest – then you just got the equation: 
 

L L2 1 0− − =  
 

which he said was quadratic and could be solved in the usual way (the formula…). 
Here some of the younger members of the class were lost, and I just assured them that 
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it wouldn’t affect their understanding of what was to follow. (In the evening some of 
the older more experienced members of the class helped the younger ones on the 
classic solution: 

− ± −b b ac
a

( )2 4
2

. 

 
Then  has positive solution:  ‘golden ration’  L L L2 5 1

21 0− − = = = +( ) . 
 
It was immediately clear that if the latter number was rational then – setting 

5 that follow it would  etc. 2
)15( −=+

b
a was also rational. We returned to that later. 

 
Some of the younger ones had not heard of the ‘Theorem of Pythagoras’ concerning 
the sides of right–angled triangles, so I just spoke briefly about that and explained 
how it can immediately be used to calculate the hypotenuse of a right–angled triangle 
when the lengths of the other two sides are known. In particular, 2  can be thought 
of as being the length of the hypotenuse of the right–angled triangle whose two sides 
containing the right angle are both of unit length (and that 3  could be thought of as 
being the hypotenuse in the case where the other two sides have lengths 1 and 2 units, 
etc.). I told them also of the classic Greek geometric problem of ‘duplicating the 
cube’, from which question the cube root of two (a new notation for some of them) 
naturally arises. Now I will return to recording the class discussion. 
 
JC: You see, there are so many numbers, and for each of them we have a question to 

ask: is it rational or irrational? You have settled for me the question concerning 
2 , but now what about, say 3; is it rational or not? 

 
RC: It’s also irrational. (JC: Can you give me proof?) Well, suppose it was rational. 

Then aababbab
a |3Then  .3. so and 3. so and ,, somefor  3 22 ==Ζ∈= . (JC: 

Why?) Because 3 ‘has the property’. {JC: Good!. Aside to reader: My own 
regular students would argue (correctly) that a and b can’t be even if a

b

A= 3
A b A A b A∈ =

is taken 
initially to be in ‘reduced form’, that one of them could not be even and the 
other odd (because 3 is odd), and so a and b must both be odd. But they are then 
not able to clinch a proof, which I leave to the reader}. Then a  for some 

b= =Ζ and so  and so  and so we also get 2 2 2 2 23 3 9 3 3. ( ) | . 
 
JC: Excellent! (I deliberately wanted to slow down a little for the benefit of the few 

in the group whom I felt were weak and so:) I take it that everyone follows that. 
Robert has just argued that if you have a rational number which is equal to the 
square root of 3 then the numerator and denominator can’t be any old integers, 
they would have to both be divisible by three. You might like to use your 
calculators to find the approximate values of 3 70226

40545 and . 
 
There was then displayed: 

3 1732050808
173205080870226

40545

=

=

.

.
K

K
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JC: You see the incredibly good agreement? But do we have equality? And if not 
between 3 70226

40545 and  then maybe between , 3  and a
b , for some integers a and 

b?  Back to you Robert. 
 
RC: You can’t have such integers a and b, because if you did then they would both 

have to be divisible by 3, and all you have to do is to keep on dividing 
numerator and denominator by three until you eventually arrive at an 
impossibility. 

 
I just spent a little time going over that, and wrote up the fine detail (as I consider it 
important that they acquire the skill – from example – of writing work up) and then 
continued. I will only briefly outline how the subsequent discussion went: 4 = 2  is 
rational; 5 6,  and 7 are irrational – they (I picked on individuals to ask them to 
add the next bit of detail) were able to provide the details. With 8

842|

, one got to this 
point: “b a .” Why not? “Because 8 
‘doesn’t have the property’”. Give me an example to show. “8 ”. So what to do 
now? Someone said to just re–write 

a2 2 28 8. |=  so  and  oh! You don' t get K a8|
4/| ,  

8 as two times 2  and it follows immediately 
that 8  is irrational from the fact that 2  is irrational. I asked who could think of 
some other numbers whose irrationality could be established in similar fashion, and I 
was instantly told: “root 12 (Why? “It’s two root three”), root eighteen (“it’s three 
root two”), root twenty (“it’s two root five”)… Then: 
 
JC: Can you guess which natural numbers have rational square roots, and which 

ones have irrational square roots? Of course, just to make a correct guess is not 
the same thing as making a correct proof! 

 
S: If a natural number is a square then it’s square root is rational , but if a natural 

number isn’t a square then its square root is irrational. 
 
JC: That’s correct, and if I had time I would love to show you how to prove it, but I 

want to move on… OK, you have guessed correctly as far as square roots of 
natural numbers are concerned, but I wonder if you can tell me what happens if 
you add two such numbers together, say, for example, root two plus root three? 

 
JC: (after some silence): What would be a daft thing to say? 
 
S: That root two plus root three is irrational because both root two and root three 

are irrational. 
 
JC: Yes! That’s right! That really would be a daft thing to say. It is true that if you 

add two rational numbers then you certainly get a rational number – that’s 
completely trivial, you can easily prove it – but when you add two irrational 
numbers then anything can happen. Sometimes you get a rational number, but 
other times you get an irrational number. Can anyone give me an example of the 
former? 

 
S: If you add root two and minus root two you get nought which is rational. 
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JC: Yes, that’s true, but I personally would regard that as being just a little on the 
trivial side, as the same would be true of ‘root three plus minus root three etc.’ 
It’s correct, it’s correct, but can you give me an example not of this type?… 
OK, you can’t, well think about it and let me know. In the meantime what about 
root two plus root three? 

 
S: I think it’s irrational. 
 
JC: Let’s hear the proof then. 
 

 

.irrational issix root  as impossible s that’and ,562.

: thenand ,36.22 :givesout  Squaring

.)32( then ,, ,32 If

2
2

2
2

2
22

−=

=++

=+∈=+

b
a

b
a

b
a

b
a ba Ζ

 

 
JC: That’s right! It’s that simple! … (pause) … but I’m a bit on the pedantic side 

and I’d like you to tidy up the last equation so as to isolate the root six and 
really be able to see the impossibility staring you in the face. 

 
S: It just comes to: 6

2 2

2
5

2= −a b
b , which is rational, and which is impossible. 

 
JC: Good; is impossible as we have already argued earlier that root six is an 

irrational number, and now a consequence of that is that root two plus root three 
is also irrational. One sees that kind of thing quite a lot in Mathematics – it’s 
part of the beauty of it! – you establish some result, it may be small, it may be 
large, and as a bonus establish some other result which follows from it, and 
maybe another consequence from that… So, you have been able to handle root 
two plus root three; equally I’m sure you would be able to deal with, say, root 
two plus root five, root three plus root five, etc. What would you say – I wonder 
– about root two plus root eight? 

 
S: It’s irrational. 
 
JC: Maybe it is, maybe it isn’t. If you think it’s irrational I wonder how you might 

prove it? 
 
S: Just suppose that .,,82 Ζ∈=+ bab

a  
 
(Aside: I was greatly impressed that all of them who made contributions now but in 
the ‘∈ Z’ when it was appropriate to do so – of course earlier in the week they hadn’t 
been so careful; with my own regular students I have to continually pull them up on 
that. They will rattle off irrationality proofs without showing any sensitivity with 
regard to ‘integers’, and that happens in spite of the number of times that I say things 
like: “when one claims that root two irrational one is not saying that 2 = a

b is 
impossible for a and b being ‘numbers’ – that would be clearly daft, since e.g. 

2 25 2
5

6
3= = − =. ,  etc.   rather what one is claiming is that a

b is impossible for a 
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and b being ‘numbers’, but not any old kind of numbers, it’s for ‘numbers’ that 
happen to be integers”.) 
 
S: continuation: Squaring gives ,)82( 2

22

b
a=+ and then you get 

.1016.2 so and ,88.2.22 2
22

2 −==++
b
a

b
a   

 
JC: (after a short silence): So, where does that get you? What are you going to say 

now? (and I wasn’t going to say they should have left the 10 on the left hand 
side and on replacing the 2

218obtain  8by  16.2
b
a= which is impossible as 18 is 

irrational, as seen earlier.) 
 
S: That doesn’t look impossible. 
 
JC: You’re dead right; it certainly ‘doesn’t look impossible’. You are saying that – I 

take it – because both sides are rational?… So, what can you do now? 
 
S: Ah! Don’t bother squaring in the first place! Instead just say that if 

etc. ,2.3 so ,2.22 then 82 b
a

b
a

b
a ==+=+  

 
JC: Good! You see the difference between the two approaches? The first – although 

it didn’t have any errors in it – just didn’t get us anywhere, but the second got 
us a result, a definite conclusion. (pause.) I’d like to look at some other kinds of 
numbers, this time cube roots rather than square roots. You remember I was 
telling you about the old Greek problem of the ‘duplication of the cube’ and 
how that led to having to think about the cube root of two? Now is that number 
rational or irrational? 

 
RC: It’s irrational. (JC: prove it.) 

 
.|2 so and ,|2 so and

,2 then , , somefor  2 that Suppose
3

333

aa

abbab
a =∈= Ζ

 

 
JC: I’ll accept that without quibble. Then? 
 
RC: Then: 

  
a A A b A A
b A b b

= ∈ = =

=

2 2 2 8
4 4 4

3 3 3

3 3 3

 for some  and so  and we get
,  then  and so 

Ζ , ( )
| | .

 
JC: (jumping on him immediately): No! no! no! That I do not accept; why don’t I? 
 
RM: Just because four divides the cube of an integer doesn’t mean that four divides 

the integer. (JC: examples?) Four divides two cubed but four doesn’t divide 
two, four divides six cubed but four doesn’t divide six. 

 
JC: Good. You see, Robert’s argument was going along nicely; he was probably 

going to say something like ‘four divides b, so two divides b, so two divides a 
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and b etc.’ But his attempted proof came unstuck when he tried to claim that 
four had to divide b. What can be done, if anything at all? 

 
RM:  Don’ t use that  gives  but instead just use that itb A b3 3 34 4= | ,
 . gives  and so then ,  and use ‘ reduced form’2 23| |b b
 
So, we had a proof that the cube root of two is irrational; I went over it quickly and 
took up Robert’s first observation that if a a a∈   and  then Ζ 2 3| | .2  As that kind of 
observation is critical for these simple irrationality proofs I wanted to make sure that 
everyone possessed the requisite skill and so asked several questions like: “if a is an 
integer which leaves remainder 0 (then 1, 2, 3, 4) on division by 5, what least 
remainder does a  leave on division by 5?”. Very quickly we saw that one could give 
irrationality proofs for 

3

3 4 53, , ,K3 3  , and when I asked if anyone could guess the 
general result for cube roots of natural numbers I was immediately given the obvious 
answer. And the same for fourth, fifth, … roots. 
 
I also spent some time asking them to investigate the rationality/irrationality of 
numbers like 15 2 5 35. , . , . , etc., and very quickly we were into the question of 
general square roots of rationals, and so, for example, had to consider equations like 

, where instead of having to consider the consequences of one 
has to consider the consequences of 5 . The bright ones were able to 
correctly argue, for example, that if a

5 72a = 2b )a
2 )a

5 72 2| |b (or  
7 752| |b (or 
Z∈  and 7 . To bring the day to an 

end I went back to square roots of natural numbers and asked if anyone could argue 
for me that 

5 2  7| a then |a

93 is irrational. One person immediately (but too hastily!) said “suppose 
93 = a

b , 93 2a etc.,  then | ”. Now a leaves ninety three possible remainders on 
division by 93, and so letting: 
 

a A A
a A A

= + ∈
= + ∈

93 0 1 2 3 92
93 0 1 4 9 1

, , , , , ,
' , , , , , ' .

K

K

for some we get:
 for some 

Ζ
Ζ

 

 
But it was immediately clear that we appeared to have a huge amount of crude 
computation to do to get the (correctly guessed) consequence, namely: 93  implies 
93|a. Someone then wisely suggested that what one should do was not to go from 
having  etc., but rather to notice that 93 is divisible by 3, 
and so a  is divisible by 3, and so a itself is divisible by 3. Then 93  

2|a

2 2b a= =
93 932 2b a a=  to saying |

2

2

23A( )
= ∈ =9 2A A for some  and so Ζ , 31 32 2b A,  and so , |331 2b . But we had already seen 
that kind of situation before and so now could conclude that 3|b. But then we have 3|a 
and 3|b, and so we are once again into the business of commenting on reduced form. 
So the simple observation that 3 divides 93 really saved a lot of work! I suggested that 
they investigate other similar examples in their own time. 
 
We were absolutely flying at that stage, but our day had come to an end. 
 
 
Some written comments at the end of that day 
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• “I found proving that the 2  was an irrational number very interesting and logical. 
I understood most of what we covered today and found it very enjoyable.” (a 14–
year old) 
 

• “I found the reason for finding integers that cannot be equal to 2  easy to 
understand.” (a 15–year old) (JC comment: clearly some mis(lack of?) 
understanding there.) 
 

• “Today was very interesting because I learned a lot about Greek mathematicians 
and history with relation to ‘the golden ratio’ and irrational numbers. Other than 
that I found the subjects of the day quite easy to understand.” (a 15–year old) 
 

• “I didn’t really like trying to get the 2 .” 
 

• “I found the golden ratio fascinating but I would love to know where those 2  
approximations come from.” (a 15–year old) (JC comment: This is pure joy for  

     a teacher, having a student who wants to know something!  Almost all of the 
following day’s work was devoted to “those 2  approximations,” and more … ) 
 

• “I found today’s class extremely interesting, especially the golden ratio. I didn’t 
quite catch on to the 2 , but when I did, I kicked myself!” (a 14–year old) 
 

• “I enjoyed learning about rational and irrational numbers. It was new but fairly 
easily understood. The class is still really interesting.” (a 15–year old). 

 
Friday 16th July 1993 

 
I allowed the day to begin slowly by gently revising (for the benefit of the weaker 
ones) what we had done the previous two days. Although I was greatly pleased with 
what they had achieved – and I told them so – I felt nevertheless that I should let them 
know that the irrationality results that they had proved were at the easy end of the 
theory, and that there are certain number which are irrational, but whose proofs are 
very much more difficult, and that it would take many years of study to be able to 
follow them. I mentioned several such numbers, e.g.,π  and 2 2 .  
 
I felt it would be of benefit to them if I was to say a few words about the meaning of 
the number 2  (and other such numbers), but without going into any great technical 
detail. First I discussed the meanings (with appropriate notation) of squares, cubes, 
fourth powers, etc., square roots, cube roots, fourth roots, etc., then the meanings of 
two–thirds powers (it wasn’t all one way; I got them to do mental and calculator 
computation), and rational powers generally. Then, what is the meaning that 
mathematicians give to a number like two to the power of root two (which is an 
irrational power of two)? The key to it is simply this (I realise that I could have 
invited them to give me their ideas – I’m sure they would have had them! – but I 
wanted to move on quickly to studying those incredibly good rational approximations, 
especially as some of them had expressed an interest in that): 

2
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JC: I’ll pick on two rational numbers, one just to the left of root two, the other just 
to the right of root two; let’s say 7

5
17
12 and . Would you use your calculators to 

find the values of two to the power of seven over five and also two to the power 
of seventeen over twelve? 

 
 There was then displayed: 

 
2 2 639015822

2 2 669679708

7
5

17
12

=

=

.

.

K

K

,  and
 

 
JC: Those two numbers are quite close together; but you can get two others which 

are closer still. You just replace that 7
5 by a slightly larger rational number, but 

which is less than root two, and the other by a slightly smaller rational number, 
but which is greater than root two. You should do this sort of thing yourself in 
your own free time. The number ‘two to the power of root two’ is then defined 
to be – its very meaning is – that number which is at the borderline between 
those increasing numbers that come from replacing 7

5 etc. and those decreasing 
numbers that come from replacing 17

12 etc. … Mathematicians would say it was 
the common ‘limit’ of those two collections of numbers. Basically that is how 
one defines ‘a to the power of b’ in general, though you have to be careful when 
‘b’ is negative. 

 
I told them about the famous list of twenty-three problems presented by the renowned 
mathematician David Hilbert at the International Congress of Mathematicians in Paris 
in 1900; that he had specifically mentioned the number 2 2 in the seventh of those, in 
which he had asked for a proof that a whole class of numbers – including 2 2 – are 
‘transcendental’ (i.e., non–‘algebraic’). I explained accurately but briefly what that 
meant, and said that it could be thought of as being a very extreme case of being 
irrational. I also told them that Hilbert’s seventh problem was a generalisation of a 
conjecture that dated back to Euler – “my mathematical hero when I was a 
schoolboy” – and that it arose in the following way: 
 
JC: If I take the two whole numbers eight and four, what power must I raise eight 

to, in order to get four? 
 
All: Two over three! 
 
JC: That’s right, good, (and I wrote on the board: 8 4

2
3 = ) and equally if I had asked 

what power four must be raised to, so as to give eight, you would have told me? 
 
All: Three over two! 
 
JC: (and I wrote 4 8

3
2 = ) OK, that’s easy. Suppose now I choose two and three; 

what power must I raise two to, so as to get three? (an inevitable silence) Of 
course you’re stuck. That’s because you’re probable casting about trying 
powers like three over two, or four over three, or …, to see if they work. But 
they don’t! ‘They’ being rational powers. There is no rational power of two 
which equals three! – (and we considered that quickly and saw why; it’s very 
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easy, of course, but it’s real Mathematics) – but there is some power, p, of two 
which equals three (and wrote 2 3p = for some p). Euler felt – he could not 
prove it – that that number p, and all like it, are ‘transcendental’, a term which 
he himself coined. The seventh problem of Hilbert was just a more general 
version of Euler’s. 

 
I also told them something of the subsequent history. Briefly: Hilbert’s lecture in 
1920 on the Riemann Hypothesis, Fermat’s ‘last theorem’ (now Wiles’ theorem! – 
Wiles had just made his announcement the previous month, and I had already told 
them about that) and the seventh problem of his. The great C.L. Siegel – in 1920 just 
a young student – was at that lecture, and, as reported in Constance Reid’s biography 
of Hilbert [2], Hilbert opined that he might live to see the first of these being settled, 
that maybe some of the young people present would live to witness the solution of the 
second, but as for the third? – Never! 
 
But how wrong Hilbert was! By 1929 the young Russian mathematician A.O. Gelfond 
had settled a special case of Hilbert’s seventh, the following year Kuzmin etc., and 
then in 1934 Gelfond, and, independently, Schneider (who was Siegel’s student) 
settled the entire seventh problem. Also that in more recent times (the 60’s) the great 
English mathematician Alan Baker had been able to prove the transcendence of – and 
thus irrationality of – numbers like 2 33 5× , and that for such (and other) 
revolutionary work he had been awarded a ‘Fields medal’ – which I said was the 
mathematical equivalent of the Nobel prize – at the International Congress of 
Mathematicians in 1970. 
 
Then, after a short break, it was time to get down to work! 
 
JC: Some of you have said that you would love to know how I got rational numbers 

that are very close to 2  etc. Well I’m not going to tell you how or where I got 
them from; instead you’re going to find them yourselves. But just before we go 
looking for those rational numbers I’d like to show you something really silly! 

 
(Aside: It was to have been our last day together and I thought a bit of fun was in 
order. I had first seen what I was about to do with them in [3], which I had read when 
I was a student, and which I found delightful. At the time it had seemed like pure 
magic, and now I hoped they would feel the same.) 
 
 Yesterday when we found the value of the ‘golden ratio’ we saw it was the 

positive solution of L L2 1− 0− = ; we solved that equation by using ‘the 
formula for solving quadratic equations’, and we found L to be ( ) .5 1

2
+ That 

number is an irrational number. Why? 
 
S: If so and   then , somefor  = 2

2
)15(

2
)15(

b
a

b
a ba =Ζ∈ ++ ,15 22

b
ba

b
a −=−=  which 

is rational, but is impossible as we know that 5 is an irrational number. 
 
JC: That’s good. It’s easy. The golden ration, ( ) ,5 1

2
+ is an irrational number. It is 

not equal to the ratio of any two whole numbers. The best you could hope for 
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would be to find pairs of whole numbers with ratios that are close to ( ) .5 1
2
+ Tell 

me what value your calculators give for ( ) .5 1
2
+  

 
 There was then displayed:  ( ) .5 1

2 1618033989+ = K 
 
JC: We all know that that is just an approximation – admittedly a very good one. It 

couldn’t but be an approximation since the left hand side is an irrational number 
and the right hand side, as it stands, terminating at that last ‘9’, is rational. 
(pause). I would like to return to the equation L L2 1 0− − = , which we have 
already solved using the ‘formula’, and make another approach at solving it: 
Let’s re–write the equation as L L2 1= + and divide both sides by L, producing 
L L= +1 1 . Nothing much had happened. (pause). But just suppose we replaced 
that last L (the one in ‘ 1

L ’) with the initial value of L, namely that L is (1 1+ L ), 
we would have: 

 

 L

L

= +
+

1
1

1
1
,

 

  
 and if we repeated what we have just done, namely replace that last L with what 

we initially knew L to be – or we could if we wished replace it with what we 
now know L to be, it would just lead to jumping on a step – we would now 
have: 

 

 L

L

= +
+

+

1
1

1
1

1
1

 

 
 and we could go on and on doing that sort of thing for miles and miles of 

blackboard space apparently getting nowhere. 
 
 On the blackboard I wrote several iterations until I had ten 

numerators/denominator bar lines: 
 

 

L

L

= +
+

+
+

+
+

1
1

1
1

1
1

1

1

1
1

                                

                                  

O

.

 …(E) 

 
 Before I came into class I was intending saying what I now went on to say, but I 

was much aided by a wonderful piece of good fortune: at the end of the 
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previous day I had left certain calculations on the board, but before we began 
our work on Friday morning one of the cleaning staff had wiped everything off 
the board, and I now asked them to imagine that the above equation (E) had 
been on the board when we finished on Thursday but that overnight one of the 
cleaning staff had come into our room and had erased nothing but that final L in 
(E). What would we now see on the board? Simply this. 

 

 

L = +
+

+
+

+
+

1
1

1
1

1
1

1

1
1 1

                                

                                  

O

.

 …(E') 

 
Then: 
 
JC: This equation, (E'), now has only one L in it, and gives an actual value for L. 

Let’s just work together and find what that value is! 
 
Of course I took the initiative and forced the pace (anyone who teaches will recognise 
that this is one of those occasions when this is what one should do, otherwise 
momentum is lost and things can fall flat. And anyway, magic is magic and a 
magician rushes you): 
 
JC: What is one plus one (pointing to ‘1 1+ ’ in E')? 
 
All: Two! (And I replaced the ‘1 1+ ’ with 2) 
 
JC: And then one over two is just one over two, and one plus one over two is just 

three over two (and I now altered E' so that the tail–end of it looked like this:) 
 

      

O

+
+

1

1
1
3
2

 

 
 Now what is one over three over two. 
 
All: Two over three! (I made the corresponding changes in E') 
 
JC: And one plus two over three? All: Five over three! 
 
JC: And one over five over three? All: Three over five! 
 
JC: And one plus three over five? All: Eight over five! 
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JC: Good! You’ve got the idea! We’ll keep on doing this together until we get back 
to the start and see what crazy value it throws up for us for L! (Aside: I would 
ask a reader who is not familiar with the ‘theory of continued fractions’ to 
perform the subsequent calculations. And finally:) 

 
All: One hundred and forty four over eighty nine! 
 
It all seemed such harmless fun! 
 
JC: All right. We knew how to find the exact solution of the equation 

; we found it (the positive solution) to beL L2 1− − = 0 ( ) ,5 1
2
+ and we knew that 

it is an irrational number. Then we did something crazy, really crazy, and it 
gave us a number. Not any old kind of number. A rational number. One 
hundred and forty four over eighty nine. (pause). Oh, by the way, you might like 
to us your calculators to find the value of one hundred and forty four over 
eighty nine. 

 
 Directly underneath the already displayed: 
 

( ) .
.

5 1
2

144
89

1618033989
1617977528

+ =

=

K

K

,  I now displayed their:
 

 
I couldn’t be certain how many of them were amazed at this – I was so excited myself 
– but certainly some of them were. (One later wrote: “Friday’s class was the class I 
most enjoyed. I found everything interesting and with a little thought I understood it 
all. I found the continued fraction expansions particularly fascinating…”) 
 
JC: Isn’t that just wonderful? We did something that appeared to be daft, but it 

turned out to be not so daft after all. And that was by wiping out that last L in 
our E which had whatever number of terms in it. What do you think we would 
get if we had many more terms and then did the same kind of thing that we’ve 
just done? 

 
S: You would get a rational number which was closer than the previous one. 
 
JC: Yes! Yes! And if you took more and more terms you would continue to get 

closer and closer still! But it all happens in an incredibly organised way. You 
alternately get rational numbers which are smaller and greater 
than ( ) .5 1

2
+ What we are playing with here are what mathematicians call 

‘continued fractions’, ‘continued’ because they go on and on. They don’t go on 
and on for all numbers. But for all irrational numbers they do. For rational 
numbers they stop, they terminate. You might like to systematically delete the L 
on the right hand side in equations like E just to see the rational numbers that 
you get – they are called the ‘convergents’ of ( ) ( )5 1

2
5 1
2

+ + and their ‘limit’  is – 
and then compare their values with ( ) .5 1

2
+ Let’s do the first several… 
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If I had had more time with them I would have loved to have introduced them to more 
work on continued fractions (I just returned briefly to them later), but it might have 
been rather one way and I wanted to return to work where I hoped they would (and 
did) make fast progress themselves. 
 
JC: I’d like to return to the problem of finding really good rational approximations 

to numbers like 2 3 5, , ,K But first I hope we can agree as to what we mean 
by “really good”. I’d like to make a definition of “really good” which is 
sensitive to the quality of approximations. With 2 , for example, we say that 
the rational number 17

12
289
144 when squared gave . The latter isn’t two – we could 

never get two in such a manner, we all know that at this stage – but it is very 
close to two. Had that numerator ‘289’ been just smaller by one then we would 
have had 288

144 , which is two exactly. 
 
 And the same sort of thing if we squared, say 41

29
1681
841. , Here we get which is 

very close to two. So close to two that a mere increase of one in the numerator 
1681 would give 1682

841 , which is two exactly. But if we squared the rational 
number 10

7
100
49 we would get . That is also decently close to two, but instead of 

having to reduce the numerator by just one to get the number two we would 
have to reduce it by two. 

 
 What we really want in considering the irrational number 2  is to find lots of 

natural number pairs (p, q) like (17, 12) and (41, 29) such that: 
  

 either  ,12 i.e. ,)( 222
2
2

2
2 )12( −=== − qp

q
q

q
p

q
p  

 
 where an increase of one in the numerator would produce the number two 

exactly, 
 

 or ,12 i.e. ,)( 222
2
2

2
2 )12( +=== + qp

q
q

q
p

q
p  

 
 where a decrease of one in the numerator would produce the number two 

exactly. 
 
 Let’s agree to call p

q an L–approximation to 2  when the former happens, 
and to call it an R–approximation to 2  when the latter happens. L for ‘left’ 
and R for ‘right’, because in the first case p

q  will be just to the left of 2 , and in 
the second case just to the right of 2 . 

 
Well, off you go then! You might like to work in pairs, calculating and noting. 
Checking systematically increasing values of q – the denominator – I’ll start us 
off by calling out the value of q, you then call out the values of ( and 

 and also tell me if these number are squares or not. So, q ? 
)2 2q −

= 1
1

)1(2 2q +
 
All: 1 and 3, 1 squared and not a square. 
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JC: So  gives us an L–approximation toq = 1 2, , namely 1

1 but no R–
approximation to 2 . Now, q = 2? 

 
All: 7 and 9, not a square and 3 squared. 
 
JC: So q  gives us no L–approximation to = 2 2 , but does give us an R–

approximation to 2 33
2, . namely,   And q = ?  

 
All: 17 and 19, not a square and not a square. 
 
JC: ? q = 4
 
All: 31 and 33, not a square and not a square. 
 
JC: ? q = 5
 
All: 49 and 51, 7 squared and not a square! 
 
JC: So q = 5 2 produces an L - approximation to ,  namely 7

5 and no R–approxi-
mation to 2 . OK, you’re on your own. Calculate! How far? Let’s say down as 
far as twenty. Whatever you find tell me whether they’re L– or R– 
approximations. 

 
All: (after a minute): There’s only one more down to 20, it’s from q , producing 

the R–approximation
= 12

17
12 .  

 
 On the board were written: 
 

1
1 ( (L-)       R-)        (L-)     L-)3

2
7
5

17
12 (  

 
RM: (in an instant!): I think I see a connection. 
 
JC: (staying calm and giving nothing away): What connection? 
 
RM: If you add the one and the one you get two, if you add the one and the two you 

get three, if you add the three and the two you get five, if you add the two and 
the five you get seven, if you… 

 
JC: (wishing that he would give up ‘cookbook’ Mathematics and make a precise 

general statement): So what would be another approximation after the one 
coming from q ? = 12

 
RM: Forty–one over twenty–nine. 
 
JC: And what kind of an approximation might that be? 
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RM: An R–. They seem to go left, right, left, right, left,… 
 
JC: Well let’s check it and see. Is forty–one over twenty–nine an R–approximation 

to root two? 
 
S: (after some seconds): Yes. 
 
JC: And what about after that one? 
 
S: (after some seconds): You’d get ninety–nine over seventy. 
 
JC: And that’s an L–approximation. And then you’d get an R–, and then you’d get 

an L–… I’ll come back to that in a moment, but first I’d like to ask another 
question. We went looking for L– and R– approximations to 2 , and in no time 
at all we have found some. But we didn’t just find some, Richard thinks he has 
found a connection, has maybe found some way of finding more of them from 
the few already found. He could be right, but he could be wrong; who knows? 
Richard’s ‘connection’ threw up q equals twenty–nine after the case q equals 
twelve, and then threw up q equals seventy after q equals twenty–nine. But all 
of that leaves one obvious question to be asked – well, obvious to my way of 
thinking. What do you think I have in mind? 

 
RC: Is q equals twenty–nine the next q after twelve, is q equals seventy the next q 

after q equals twenty–nine. 
 
JC: Ah! Excellent. Music to my ears. I think I know what you mean, but would you 

just be a bit more precise as to what you mean by “next”? 
 
RC: I mean are there any values of q between twelve and twenty–nine that might 

give you and L– or an R–, any between twenty–nine and seventy that might 
give an L– or an R–? 

 
JC: Wonderful. You see, the question is this: Richard saw a pattern – or thinks he 

has seen a pattern – it certainly seems to be successful, so far anyway!, but have 
some other L–’s or R–’s been missed out, jumped over? Well let’s check and 
see. We have to check q equals thirteen, fourteen, and so on down to q equals 
twenty–eight. By chance that comes to sixteen tests to be done and there are 
sixteen of you, so there is one each to check. Off you go (and I just allocated 
these numbers, one to one). 

 
All: (in seconds): There are no missing L–’s or R–’s between twelve and twenty–

nine. 
 
I didn’t check on individuals, and it might have been possible that some didn’t 
actually do what they should have done. But because it was so simple I didn’t wish to 
embarrass anyone by putting them on the spot, and continued: 
 
JC: That’s right. And what do you suspect happens between twenty–nine and 

seventy? 
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All: There are no missing ones in there either. 
 
JC: Yes, you’ve guessed correctly. But there’s a lot more checking to do for that 

one. You’ve got to test q equals thirty, thirty–one, thirty–two, and so on down 
to sixty–nine. In your own time you should pick at random on a number in that 
range and check it to verify that it does not give you an L– or an R–
approximation. Let’s just do one together. Someone please pick on a value. 

 
A value was offered and we tested it together. Then: 
 
JC: I’ll say something more about that later, but now how about Richard’s recipe 

for producing more and more L–’s and R–’s? How can we prove that it’s not 
just a fluke, but that it does actually work, not just for the couple of cases that 
have sprung up, but that it continues to work? So, what general claim are we 
making, and how can we prove it? (There was a lull and nobody was saying 
anything, not even Richard.) Maybe I’m not making myself clear enough, so 
how about this? Please take a page, put your name on it, and on it complete the 
following sentence: if a over b is an L–approximation to root two, then what 
over what is an R–approximation to root two? 

 
(I looked at them later, and report on them now. Three of them seemed to be lost 
[writing: “when a

b
b
a is an L - approx.  then  is an R - approx.”, “when a is an l approx. 

”, and something crossed out], but the other thirteen clearly understood, 
though the standard of presentation varied greatly, ranging from the majority [three of 
whom had only one year of secondary schooling] straightforwardly excellent 
[“when

a + 2b

a
b is an L–approximation then )(

)2(
ba
ba

+
+ is an R–approximation”], through some 

inelegant expressions [e.g. “when a
b a b c is an L - approximation then,   + =

numerator.  theis   where dd
where c is 

the denominator and Then cb =+ c
d  is an R–

approximation”], to the [one only] very badly expressed, which was full of horrors 
[“when a

b is an L app., then X is an R app., )(
)2(

(
() , ba

ba
a

a
+

+
)

)
b

bb
+

(
b

babaX +++ ===+= ”].)  

 
Then: 
 
JC: So who can complete the sentence for me? 
 
S: When a over b is an L–approximation then a plus two b over a plus b is an R–

approximation. 
 
JC: Don’t forget the bit about the root two. When a over b is an L–approximation to 

root two then a plus two b over a plus b is an R–approximation to root two. OK, 
how to prove this though? 

 
No one, not even the best of them, had any idea how to go about it. So I had to give a 
shove: 
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JC: Ask yourself: what does it mean to say that a over b is an L–approximation to 
root two? It means that a and b are integers – and you can take them to be 
positive, in practice that’s what they’ll be – such that a squared minus two times 
b squared is equal to minus one. And what does it mean to say that a plus two b 
over a plus b is an R–approximation to root two? It just means that a and b are 
integers such that a plus two b all squared minus two times a plus b all squared 
comes to one, plus one that is, and not as with the other one where it is minus 
one. 

 
On the board was written: 
 

 1)(2)2( :means 2  toapp.–Ran  ,

12 and , :means 2  toapp.–Lan  ,
22

22

)(
)2( =+−+

−=−Ν∈

+
+ baba

baba

ba
ba

b
a

 

 
JC: The problem now is this: if you are given that the first of these equations holds, 

how can you show that the second of them must also hold? 
 
I will spare the reader the details (one of them wanted to prove the second held by the 
usual horror of supposing that it held, and then to show that it held…), but I had to 
intervene and essentially do it myself, and I suppose that now they actually learned 
something from me, a small skill, and now was written on the board. 
 

.2 ion toapproximatRan  is  So

.12 
,1)1()2(2

24244
)2(2)44()(2)2( Now

.12 then 2 ion toapproximatLan  is  Since                  :Proof

.2 ion toapproximat-Ran  is 

 then2 ion toapproximatLan  is  and , If :Theorem Simple

22

2222

2222

222222

22 

)(
)2(

b
a

−

−=−

=−−=−−=+−=

−−−++=

+−−++=+−+

−=−−

−Ν∈

+
+

b+a
2b+a

b
a

ba
ba

bathat knowalready   webecause
baba

babababa
babababababa

ba

ba

 

 
They could do the elementary algebraic part of this; that is they could tell me that “a 
plus two b squared equals a squared plus four ab etc.”, but making the above start of 
proof was not something that occurred to them. However, having once seen what to 
do, there was no stopping them. 
 
JC: But going back to Richard’s observation that the approximations seem to go 

left, right, left, right, …, what should we next think about (Aside to reader: I 
agree, it’s a leading question, but I wanted to give them a chance to get back to 
something like their usual selves)? 

 
S: What about if a over b is an R–approximation? 
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JC: Of course. We went looking for L–’s and R–’s for root two. We found a few. 
Richard thought he saw something. He was absolutely right. We made a guess 
about how to form an R–approximation to root two from an L–approximation to 
root two, and we verified an actual numerical case of it. 

 
 We might have verified hundreds, thousands of such cases, but that would not 

constitute a proof of the general assertion. Then we were able to find a proof of 
it, which with a bit of hindsight we see – yes? – was easy. Now we ask if 
something similar can be done if we have an R–approximation. And what do 
you think, what can we say? 

 
S: You get the same rule. (JC: namely?) If a over b is an R–approximation to root 

two then a plus two b over a plus b is an L–approximation to root two. 
 
Of course they could prove it. They saw that it was just a matter of going through the 
proof that we already had and making obvious sign changes. Then (a big surprise in 
store for them!), but I gave nothing away: 
 
JC: Well, then off you go, working in pairs, and tell me what you find when you do 

the same sort of thing with root three. 
 
S: How far should we try? 
 
JC: Well how about as far as you did earlier, down to twenty? 
After some minutes they finished their calculations and all had correctly found that 
root three has no L–approximations and three R–approximations with denominator 
ranging from one to twenty, the latter being (displayed on board): 
 

2
1

2 2 7
4

2 2 26
15

2 52 31 1 7 34 1 26 315 1( . ), ( . ), ( . )− = − = − =  
 
Many of them seemed genuinely perplexed that no L–approximations had cropped up; 
they felt there should have been some. One of them even suggested that what was 
going to happen was that if we checked on a little further we would come across three 
L–approximations on the trot (followed by three more R–approximations, …). We 
collectively tested some more values of q (21, 22, 23, …) and found no L’s or R’s. 
Then: 
 
RC: I think I see a pattern for the R–approximations. If you add the numerator to 

twice the denominator you get the next denominator. With the two over one, 
that gives you two plus two times one, which is four, which is the second 
denominator. Then with the seven over four, that gives you seven plus two 
times four; that’s fifteen, which is the third denominator. And if you then took 
the twenty–six over fifteen and added the twenty–six to two times fifteen it 
would give you the next denominator. (JC: which is?) Fifty–six. 

 
JC: (keeping calm): Does that work? What do we have to do to see if that is correct? 
 
S: Work out fifty–six squared, multiply that by three, add one, and see if the 

number you then have is a square. 
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JC: Let’s do it. You get what? 
 
All: Three thousand one hundred and thirty–six, nine thousand four hundred and 

eight, nine thousand four hundred and nine, and the square root of that comes to 
ninety seven! 

 
JC: (letting go): We must be on to something here! This is just great! Come on 

though, give me a precise mathematical statement of what we might be on to 
here. 

 
S: If p over q is an R–approximation to root three, then p plus two q is the 

denominator of the next R–approximation to root three. 
 
JC: Good, good, but be careful. You have used the term “next”, but it mightn’t be 

“next” at all, it might just be “another”. And maybe that gives us the next or 
otherwise denominator, but what about the corresponding numerator? 

 
 On the board was: 
 

?3 ion toapproximatRan    .3 ion toapproximat-Ran  

.3  toionsapproximatR  .

)(
?

56
97,15

26,4
7,1

2

−

−

+qpq
p  

 
 Several equivalent suggestions were simultaneously called out: “the difference 

between the numerator and denominator is the same as the sum of the previous 
numerator and denominator” (7 4 2 1 26 15 7 4 97 56− = + − = + − =, , K

7 7 4 15 26

) “if you 
add the old numerator and denominator to the new denominator, you will get 
the new numerator” (2 1 4+ + = + + =, ,K) 

 
JC: So with p and q being the numerator and denominator of the old R–

approximation to root three, and maybe – because remember we haven’t proved 
it – p plus two q being the denominator of the next, or maybe just another R–
approximation to root three, what are you telling me – and I want to hear it in 
terms of p’s and q’s – might the numerator of the new R–approximation to root 
three? 

 
S: Two p plus three q. 
 
JC: That is certainly what it would have to be if what you have told me is correct. 

“The different etc.” would give that if the new numerator was X, then X minus p 
plus two q equal to p plus q would give that X equals two p plus three q, and “if 
you add etc.” would give that X equals p plus q plus p plus two q, namely two p 
plus three q. So we have the following conjecture or guess: 

 

 
.3  toissue)another  s that’- onenext   thebemight (it 

ionapproximat-Ran  is   then 3 ion toapproximat-Ran  is    If 2
32
qp
qp

q
p

+
+
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 Who can prove this, if it is true? 
 
The following proof just wrote itself; I only wrote up what I was told. 
 

.3 ion toapproximat-Ran  indeed is  so and

)(horray! 13
121239124

)44(39124)2(3)32( :Now
not).or  1  tocomesit  if see  to,)2(3)32( of  valueat thelook 

 toneed  we3 ion toapproximat-Ran  is  if see (To

.13 then 3 ion toapproximat-Ran  is   Since  :

)2(
)32(

22

2222

222222

22

22

)2(
)3(2

qp
qp

qp
qpqpqpqp

qpqpqpqpqpqp
qpqp

qp

qp
qp

q
p

+
+

=−=

−−−++=

++−++=+−+

+−+

=−

+
+

Proof

 

 
JC: It’s very easy really, isn’t it? The thing was, of course, to have exercised 

judgement, to have had your eyes open, to have noticed things, to be guided by 
what you already knew. To have made the correct choice – that ’‘ )2(

)32(
qp
qp

+
+ didn’t 

lead to a successful conclusion. (pause). OK, we’ve found a way of producing 
an R–approximation to root three from an R–approximation to root three, but 
what about the question of L–approximations to root three. Are there any? If 
there are, then are they connected in any nice structured way as we’ve just seen 
with the R– ones? 

 
There was silence which I allowed to last for just a while, and then: 
 
JC: May I just point out a little something? If you do find an L–approximation to 

root three then the above means of producing an R–approximation to root three, 
from one already possessed, will also produce an L–approximation to root three 
from the one that has been found. 

 
We all just checked that the above proof immediately altered to produce the 
conclusion: 
 

( ) ( )2 3 3 2 1 32 2 2 2p q p q p q+ − + .1= − − = − if one started with  
 
JC: So we are still stuck with the unresolved question: can we find an L–

approximation to root three? 
 
RM: (a little tentatively): I don’t think root three has any L–approximations. 
 
JC: Can you prove it? Let’s hear your reasons. 
 
RM: Well if there were any then you would have p q2 23 1= −  for some integers p 

and q. 
 

Report on Number Theorising with Talented Youth 



 39

JC: So you would. That’s precisely what’s meant be root three having an L–
approximation in the first place. And? 

 
RM: But when you divide p by three there are only three possible remainders – 

nought, one or two – and from those you get that p squared leaves remainders 
nought, one or one; but then p squared plus one leaves remainders one, two or 
two. But the equation p squared equals three q squared minus one would give 
that p squared plus one was equal to three q squared which leaves remainder 
nought on division by three. 

 
JC: Exactly! That’s it! Root three just hasn’t got any L–approximations. 
 
I went over his proof and wrote it out in notional detail. We were now getting close to 
the end of our time together and so very quickly I drew their attention to certain 
obvious question: 
 
JC: Now look at all the questions we have facing us. What about root five, root six, 

root seven, …? Do they have L– and R– approximations? Maybe some behave 
like root two and have both kinds. But even if they do, are there the kinds of 
connections between them that we’ve seen? Maybe some behave like root three, 
where there were R–’s but no L–’s? Others may have L–’s but no R–’s? And 
some may have no L–’s or R–’s. In your own free time you might like to 
investigate these questions and see what you come up with. 

 
 And that’s what we get into by asking about square roots (for which we had 

been using the common shorthand ‘root’), but you and I know that it’s not just 
square roots that give us lots and lots of irrational numbers. There are the cube 
roots, fourth roots, fifth roots, … So, what about those? We can ask the obvious 
analogous questions. Say, for example, we start with the cube root of two, 
which we know is irrational – meaning that there are no integers p and q such 
that p over q cubed is equal to two. Well, as with square roots, we can ask for 
the next best thing (written up:) 

 

?12or  12  with ,  thereare i.e.

?2)(or  2)(  with ,  thereAre

3333

33
33

11

+=−=Ν∈

+=−=Ν∈

qpqpqp

qp
qq

p
qq

p

 

 
 We could call these ‘L– and R–approximations to the cube root of two’. And 

you could investigate L– and R–approximations to the cube roots of four, five, 
six, seven, … You might find some, and you ask if there are connections 
between them… By the way, just stick your necks out and tell me what you 
think happens – I know we haven’t actually done any work to back up any 
guess we might make, but just have a go anyway. 

 
All: You would just get the same sort of thing happening as already happened with 

square roots! 
 
JC: Well it wasn’t a fair question of me to put to you, and you’ve just given me the 

natural response. But you are in for an incredible surprise. In moving up from 
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square roots to cube roots we have entered into a quite different world 
altogether! Although it is no more difficult to prove that the cube root of two is 
irrational that it is to prove that the square root of two is irrational, in 
considering their respective L– and R–approximations the outcome is so 
radically different. 

 
 There is a beautiful theorem due to Delauney–Nagell (see e.g. [4] or [5]) – the 

first a Russian, the second a Norwegian – which reveals that if you choose any 
natural number d, then it’s cube root has either no L–approximations – that is 
not a surprise to us, as we’ve already seen that sort of behaviour already – or 
else only ONE L–approximation! The same for its R–approximations, and 
similar results for fourth roots, fifth roots, … 

 
Our time was now up… 
 
I had been asked to work with them for the first week only, but the following day I 
spoke with Alastair Wood and begged him to allow me an extra day with them – if it 
didn’t interfere with his plans and those of Fiona Lawless – and he granted my wish. 
Since this report is already quite long, and the reader will have a good idea as to how 
we worked, I do not intend giving a similarly detailed account of that last day. I 
would estimate that in the last day we did as much work as in any two days of the first 
week, but I would like to record just a sketch of the content of that day’s work. 
 

Day six, Wednesday 28th July 1993 
 
My intention was to continue from where we had left off. I was especially keen to 
reveal to them the secret of the laws for the connections between the L– and R–
approximations. What do I mean by that ‘secret’? 
 
Consider the task, for example, of trying to find a connection between the L– and R–
approximations to 19 . Imagine trying to do that, using the approach with which they 
were already familiar.  Now that approach (wonderful and all though it was, and they 
had learned a great deal about it) would be completely hopeless. 
 

19  has no L–approximation (of course one wouldn’t have been so foolish as to go 
blindly looking for any of them when [being alert to the possibility that there might 
not be any] a moment’s reflection enables one to prove that there aren’t any) but it 
does have R–approximations. The first of those is 170

39 , and would have been found 
fairly quickly. But the second one is 57799

13260 , and in trying to find it one might well have 
jumped to the too hasty conclusion that there wasn’t a second one. 
 
But even if one had had the patience to have persevered and eventually found it, one 
would need the divine powers of an Euler or a Ramanujan to see the connection 
between them. (The third R–approximation to 19 19651490

4508361 is . The fourth, fifth, sixth 
are … . If you are not familiar with this corner of Number Theory and are wondering 
how this is done, all will be revealed later.) 
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Just before I was about to start I was informed that we were to have an observational 
visit by DCU’s President (Dr. Daniel O’Hare – the Talented Youth programme at 
DCU is his brainchild), Alastair Wood, and some others. I made an on-the-spot 
decision that rather than start with the continuation of our L– and R–work, and be so 
far into it that our visitors would not know what we were up to when they arrived,      
I would instead begin with something alternative and completely unrelated, take a 
break when our visitors arrived, and then – with some revision of what we had 
already done in the first week – launch into our L– and R– work. 
 
Brief summary of topics discussed before the arrival of visitors 
 
• Euclid’s theorem on perfect numbers: If  is prime, then 

 is perfect. 
 

)12( and −∈ nn Ν
)12.(2 1 −− nn

• For which  prime? Numerical experimentation quickly suggested 
 is composite when n is composite (and I showed how to prove that) but 

that it is a real problem – in fact it is one of the greatest unsolved questions in 
Mathematics! – as to what is the complete picture when n is prime. 
 

)12( is −Ν∈ nn
)12( −n

• The ‘Mersenne numbers’ , p prime. Which values of  p make  
be prime and which make it composite? 

M p
p= −(2 1) M p

 
M p

M p
p

p

 is prime for

 is composite for

=

=

2 3 5 7 13 17 19 31 61 89 107

11 23 29 37 41 43 47 53 59

, , , , , , , , , , ,

, , , , , , , , ,

K

K
 

 
• But how can one test primality of these numbers? There is the crude ancient test of 

Eratosthenes, which is quickly seen to be completely useless once p starts to get 
large. 

 
• Euler’s theorem on prime divisors of the Mersenne numbers (the first significant 

advance in testing the primality of  M p ):
 

If  p is an odd prime then any prime q that divides  ,pM
must leave remainder 1 on division by 2p? 

 
• Combining the latter with Eratosthenes allowed us to test the primality of, 

e.g.  because any prime divisor of  (whose square root is between 362 and 
363) must leave remainder 1 on division by 34, and so one only needs to test 
possible prime divisors from the list: 103, 137, 239, 307. None of these 
divide and so it follows immediately that is prime. 
 

M17 ,

M

M17

17 , M17

• The Fermat numbers, with which they were already acquainted from the first week. 
How to test primality?  The Eratosthenes test is once more completely useless after 
the first five of them (3, 5, 17, 257, 65537 – just the ones that Fermat knew were 
prime) 
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• Euler’s theorem on prime divisors of the Fermat numbers (the first significant 
advance in testing the primality of  Fn ):

 
If then any prime dividing  leaves remainder 1 on division by 2 to the power 
of

N∈n
( )n +

nF
.1  

 
• Combining this Euler result with the Eratosthenes allowed us to test 

The first of these has square root just larger 
than 256 and so we only needed to test possible prime divisors from the list: 

. Checking that neither of these divided  showed  is prime. Then we 
looked at  and as its square root is just larger than 65536, it meant we only had 
to test for possible prime divisors from the list: 193, 257, 449, 577, 641, … (ending 
with the largest prime less than 65536 which leaves remainder 1 on division by 
64). We checked each of 193, 257, 449, 577 in turn, found that none of them 
divided 4294967297, but on testing 641 we found – as Euler himself did (they 
already knew from the first week that , but only as a fact. Now they saw 
where that came from) – that  is composite. 

F F4 565537 4294967297( ) (= = and 

97 193,
F5 ,

F5

).

F4 F4

641| F5

 
Had I had more time I would have introduced them to the remarkable Lucas–Lehmer 
test for the Mersenne numbers, and to the equally remarkable Lucas–Pépin test for the 
Fermat numbers, but our visitors arrived and I spoke with them while my students 
took a short break. 
 
After the break 
 
• A quick revision of what we already knew about L– and R–. 

 
• I asked them to investigate L– and R–approximations to 5 . When they had only 

found 2
1

9
4(L-) and (R-)

( . )517 12 −

several called out “oh! It’s p plus two q!” (it just jumps out 
at you). But is it right? It would predict 17 for the next L–denominator. And what 
does  come to? To 1444, which is 38 , giving 2 38

17  (L–)! So they knew 
they must be on to something! 

 
Frantic scramble to find the predictor for the numerator. A few too hasty suggestions  
tried and discarded before “two p plus five q” was tried – it gives the ‘9’ and ‘38’ of 
course, and the double prediction of the R–approximation: 
 

)172.5161(,namely  , 22
72

161
17)  times238(

)17  times538  times(2 =−+
+  

 
clinches it! But does it? I asked them to write out a formal proof of:  
 

“if p q p
q, ∈Ν and is an L– (R–) approximation 

to 5 52 5
2 then is an R (L ) approximation to p q

p q
+

+ − − .” 
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I collected their work and will just report that eleven of them gave perfectly 
acceptable 

proofs (including one 14–year old girl, Sharon Murray, two years of secondary 
schooling, who had moved up from the other group after the first week), but a 
common error in the work of the other six was to write:  
 

“( ) ,2 5 4 252 2p q p q 2+ = +  etc.” 
 
What about L– and R– for 6 7 8 10, , , ,K?  Someone argued correctly that 6  
has no L–approximations, but by the longish route of considering the six possible 
remainders that ‘p’ leaves on division by 6, but that was immediately improved upon 
by:  “if p

q is an L– app. to 6  then we have  and  is 
impossible since we know (earlier work) that 3

p q2 26= − ,
2/

1 q2p q2 21 6 3 2+ = = ( )
1+| ( p ) . This is, of course, just 

another example of a saving device already encountered in connection with 
irrationality proofs. 
 
• Which other number could be argued in similar fashion? 
 
These:  

But what about:  

12 15 18 21 24 27 30

7 8 10 11 13 14 17

, , , , , , ,

, , , , , , ,

K

K ?
 

 
It arose naturally, and obviously, that square roots of primes cause the most work. 
 
Of the primes, which ones don’t have L–’s?, but which do?: 
 
Don’t (we collectively argued): 3 7 11 19, , , ,K  
 
Do: 5 13 17, , ,K found by trial, and we saw that if you tried to argue that there 

were none, the ‘proof’ falls flat. For example, keeping an open mind about 13, 
if you try to prove that it has no L–approximations, by examining the 
remainders that ( ) leaves on division by 13 you get: p2 1+

 
For:      1,  2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, some 
Then:  ,  2,  5,  10,  4,  0,  [11,  11,  0,  4,  10,  5,  2],  

p p P P
p A A

∈ = + ∈

+ = + ∈

Ζ Ζ

Ζ

, ,
.

13 0
1 13 12

.
 

 
Because of that ‘0’ it doesn’t follow that  for all  13 12/ + ∈| ( ) .p p Ζ   
 
In fact,13  for all   ),1(| 2 +p with where p p P P= + ∈13 5 8, .Ζ  Thus it doesn’t follow 

that 13 doesn’t have any L–approximations (the real force of this apparently 
trivial observation later revealed itself in connection with 34 . How?) The 
same observation applies to all other cases: 5  17 29 37 41 53, , , , , ,

61 ,K73,  (Fermat, Euler, …) 
 
What about 8 ? Someone made a correct argument by considering the eight possible 
remainders that ‘p’ leaves on division by 8, but that too was improved upon by 
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someone who observed that it was only necessary (as in (iii) with 6) to look at the 
four remainders on division by 4: “if ,8  toapprox.Lan  is −q

p  then 

, impossible since 4p q2 21 8 4 2+ = = ( )q 2 12/ +| ( )p .” 

 (already known because of the ‘
 
We now knew that 8 12 20 24, ,3’),   (already 
known because of the ‘3’), 28  (already known because of  ‘7’, but now seen to be 
more ‘economically’ argued because of the ‘4’), 32 40 44, ,  (‘11’ etc.). 
 
(v) I had given then a ‘Table of Solutions for Pell’s Equation’ (see Appendix One: I 

also told them that Pell’s only claim to fame was that Euler had mistakenly 
attached Pell’s name to it. See, for example, the magnificent [6], not just for the 
Pell reference) and now I asked for explanations for all those entries, starting at 

 with ‘no solution’. d = 3,
 
When e.g. I called out ‘7’, I was told “it’s because of 7 itself”, and when I called out , 
e.g. ‘22’, I was told “it’s because of 11”, but when we got down to 34 there was the 
inevitable blank. It was immediately clear that one couldn’t argue with the ‘17’, and 
certainly not with the ‘2’, and the suggestion – “don’t try to argue the 2 and 17 
separately but instead argue with the 34 itself – was also seen to get us nowhere when 
we considered: 
 
p p P P
p A

∈ = + ∈

+ = +

Ζ Ζ, ,34 0
1 34 12

 1,  2,  3,  4,  5, , 31, 32, 33, some 
,  2,  5,  10,  17,  26,  3,  16,  31,  14,  33,  20,  9,  0,  

K

K

.
 

 
that ‘0’ corresponding to p P= +(34 13) (and another ‘0’ occurs further along from 
p P= +(34 21) ). We returned to that later. 
 
(vi) Now began the most important part of the whole day’s work. I went back to the 
simple numerical fact that 3

2  is the first R approximation to 2− . Then I wrote on the 
board with obvious commentary: 
 

3 2 2 1

3 2 2 3 2 2 1

3 2 2 3 2 2 1

9 6 2 6 2 8 9 6 2 6 2 8 1

17 12 2 17 12 2 1
17 2 12 1

2 2

2 2

− =

− + = −

− + =

− − + + + + =

− + =

− =

.

( . )( . )

. )( . )

( . . )( . . ) ,

( . )( . ) ,
. .

 ‘cross terms’  cancel

(  and multiplication gives:

 tidies to:

 in other words to:
!!!!!

 

 
This simple calculation had produced – fluke? chance? accident? miracle? – the 
second R–approximation to 2  from the first one! (As the late genius, English 
comedian, Tommy Cooper , used to say, “just like that…”) It’s a miracle. Of course to 
understand it and its developments requires insight and thought, and that is something 
that will only come to them in time. 
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And what if we did with 17
12

3
2 what we’ve just done with ? Some said we’d get the 

third R–approximation to 2 . Well, try it and see, and this is what they got: 
 

17 212 1

17 12 2 17 12 2 1

17 12 2 17 12 2 1

289 204 2 204 2 288 289 204 2 204 2 288 1

577 408 2 577 408 2 1
577 2 408 1

2 2

2 2

− =

− +

− +

− − + + + +

− +

− =

.

( . )( . )

( . )( . )

( . . )( . . )

( . )( . )
. ,

=

=

=

=

,

,

 

 
producing, not the third R–approximation to 2  (which they already knew to 
be . ,2 ion toapproximatRh  rather thebut  ), 408

577
70
99 −fourt  

 
So where was the third one? Miracle time again! 
 

( . ) ( . )

( . )( . )

( . )( . ) ,

( . . )( . . ) ,

( . )( . ) ,
. ,

3 2 2 1 17 212 1

3 2 2 3 2 2 1

17 12 2 17 12 2 1

51 34 2 36 2 48 51 34 2 36 2 48 1

99 70 2 99 70 2 1
2 70 1

2 2 2 2

2

− = − =

− + =

− + =

− − + + + + =

− + =

− =

 and  give:

 and 

 multiplication gives:

tidies to  (won - der - ful)!
992

 

 
now producing the third R–approximation to 2, . 99

70  
 
(vii) They took to this immediately. What sort of language was used? I said we were 

using ‘the method of composition’ (a made–up term). I didn’t want to use the 
classic identities: 

 
( )( ) ( ) (x y X Y xX yY xY yX2 2 2 2 22 2 2 2− − )2= + − + , 

 
which would have been too much out-of-a-hat, but rather wanted to do something so 
utterly transparent (from a technical point of view), so simple, that almost anyone can 
follow (though not necessarily appreciate) it. 
 
And what was composition about? It was about: taking an equation of the R–type, 
splitting it up, and then either combining it with itself, producing another R–type 
equation, and thus another R–approximation, or: taking an equation of the R–type, 
splitting it up, and combining it with another similarly split R–type equation and in 
the process thus producing another R–type equation. 
 
And what structure was there to all of this? They correctly guessed that ‘the mth R–
approximation to 2 when composed (combined – call it what you will) with the nth 
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R–approximation to 2 gives the m n  R - approx.  to 2th( )+  and so, as I put it, 
behaves like ‘ordinary addition’. 
 
(viii) But this sort of thing doesn’t just have limited applicability to 2 ; you can do it 
with 3 5  e.g. starting with just the first R–approximation to6 7, , , ,K  3 : 2

1,
 

2 31 1 2 1 3 2 1 3 1

2 1 3 2 1 3 1

2 3 3 4 2 3 2 3 3 1

7 4 3 7 4 3 1 7 3 4 1

2 2

2 2

− = − + =

− + =

− − + + + + =

− + = − =

. ( . )( . )

( . )( . ) ,

. )( . . ) ,

( . )( . ) , . ,

 gives 

 giving:

(4 2. 3  tidies to:
 

 
and K3 ion toapproximatR   theis 4

7 −second  Well it’s clear where that leads to… 
 
Of course none of this proves anything of a general nature. I just wanted to expose 
them to certain phenomena/ideas, to excite their interest and curiosity, not to prove 
anything. 
 
If you compose the fourth and sixth R–approximations to 2  you get the tenth R–
approximation to 2. ’ The same happens if you compose 2 s third and seventh R–
approximations. And the same holds if you compose all possible R–approximations 
for all possible irrational square-roots. Why is this true? Later I tried to convey – with 
a little bit of hand-waving – why this is true. 
 
What about L–approximations? How do they compose? Simple! Let’s start at the very 
beginning. Just take the first L–approximation to 2 , and then from: 1

1,
 

( . ) ,

( . )( . ) ,

( . )( . )

( . . )( . . ) ,

( . )( . ) ,
. .

1 21 1

1 1 2 1 1 2 1

1 1 2 1 1 2 1

1 1 2 1 2 2 1 1 2 1 2 2 1

3 2 2 3 2 2 1
3 2 2 1

2 2

2 2

− = −

− − = −

− − = −

− − + + + + =

− + =

− =

 obtain

splitting 

combining 

  !!!!!!!

 

 
It was immediately clear that something was going on there. 
 
And if one had chosen a different L–approximation to 2  and composed it with itself 
in like manner? The second L–approximation to 2 , produces what? It’s clear in 
advance it will produce an R–approximation to

7
5,

2  (as the –1 times –1 gives +1), but 
which one? One might suspect it will give the second R–approximation to 2, but 
actual calculation shows it produces the R–approximation 99

70 , which is the third one. 
So where has the second R–approximation gone to? Ah! yes!, you get it by 
composing/combining the first and second L–approximations to 2 : 
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( . ) ( . )

( . )( . )

( . )( . ) ,

( . . )( . . ) ,

( . )( . ) ,

1 21 1 7 2 5 1

1 1 2 1 1 2 1

7 5 2 7 5 2 1

7 7 2 5 2 10 7 7 2 5 2 10 1

17 12 2 17 12 2 1

2 2 2 2− = − − = −

− + = −

− + = −

− − + + + + =

− + =

 and  and 

 etc.

 

 
And what if you compose an L– and an R–approximation to 2 ? It’s obvious that 
you get an L–approximation. And the overall structure jumps out at you. And many 
quickly grasped the point that just as the composition of R–approximations behaves 
like addition with 1, 2, 3, 4, … so too does the joint composition of L’s and R–’s 
behave like addition, but now with 1

2
3
2

5
21 2, , , , , etc. 

 
And what of 3 5  Well it was immediately clear that from, e.g. the first 
R–approximation

6 7, , , ,K
2
1 3 to , you could do just this: 

 
( . ) , ( . )( . ) ,

( . . )( . . ) ,

( . )( . ) , . .

2 31 1 2 1 3 2 1 3 1

4 2 3 2 3 3 4 2 3 2 3 3 1

7 4 3 7 4 3 1 7 34 1

2 2

2 2

− = − + =

− − + + + + =

− + = − =

  which led to:

 tidying up

to  

 

 
But, more generally, if 1)1.32( fromthen ,3 ion toapproximatRan  is   22 =−−q

p  

 and  you get:( . )p q2 23 1− =
 

( . )( . )

( . )( . ) ,

( . . )( . . ) ,

[( ) ( ). ][( ) ( ). ] ,
( ) ( ) ,

2 1 3 2 1 3 1

3 3 1

2 3 2 3 3 2 3 2 3 3 1

2 3 2 3 2 3 2 3 1
2 3 3 2 12 2

− + =

− + =

− − + + + + =

+ − + + + + =

+ − + =

,  and

p q p q

p p q q p p q q

p q p q p q p q
p q p q

 

 
 and thus producing the R–approximation .3  to2

32
qp
qp

+
+ Since this was the law that had 

been discovered empirically away back in our first week, the reader can imagine the 
great sense of satisfaction there was amongst the sensitive ones. (Also it will be seen 
how this relates to my earlier introductory remarks concerning the problem of trying 
to find R–approximations to 19 ). 

 
 All the obvious correct general guesses were made, but I didn’t wish our work to only 

be at this level of blind calculation and guessing: I wished – and it had to be done 
quickly as our time was running out – to convey some idea as to why, for example, 
the repeated composition/combining of the ‘fundamental solution’ of the Fermat–Pell 
equation produces all of the R–approximations. To convey the idea I took the first and 
third R–approximations to  , but instead of combining them by: and 2 3

2
99
70,
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( . )( . )

( . )( . ) ,

( . . )( . . ) ,

( . )( . ) , ( . ) ,

3 2 2 3 2 2 1

99 70 2 99 70 2 1

297 198 2 210 2 280 297 198 2 210 2 280 1

577 408 2 577 408 2 1 577 2 408 12 2

− + =

− + =

− − + + + + =

− + = − =

 to give

 

 

 
 which – as they expected – produces the fourth R–approximation to , now 

combine them like this: 
2

 
( . )( . ) ,

( . )( . ) ,

( . . )( . . ) ,

( . )( . ) , . ,

3 2 2 3 2 2 1

99 70 2 99 70 2 1

297 198 2 210 2 280 297 198 2 210 2 280 1

17 12 2 17 12 2 1 17 2 12 12 2

+ − =

− + =

+ − − − + − =

− + = − =

 sign interchange!

 (no change) gives

tidies to  

 

 
 and so only produces the second R–approximation to 2 . 

I used very informal language, saying that we had ‘pulled back a solution’. But this 
pulling back idea would go through not just with 2 , but can be seen to go through 
generally with 3 5 6, , ,K  And it was this that enabled one to prove not only that 
the only R–approximations to  are those generated by repeated composition (but 
without the switching of signs) of the ‘fundamental solution’ (i.e. the numerator and 
denominator of the first R–approximation of the Fermat–Pell equation with itself). 
This can be seen to be so because 

2

if there were any R–approximations other than the 
ones so generated, then, thinking about the one of those with the least denominator, 
and composing it with the fundamental solution – with sign interchange – produces an 
R–approximation (that bit is obvious) which has a smaller denominator (that’s a detail 
to be argued) than the one under consideration, but which can’t be one of the R–
approximations generated by repeated composition of the fundamental solution with 
itself (easily argued). Producing this smaller denominator provides a refutation… 
 
(ix) Finally, since many of them seemed to be so taken with the idea of continued 
fractions, I gave them a copy of a table of continued fraction expansions (Appendix 
Two) from [7] (later I was asked to recommend a book on Number Theory, and I was 
tempted to name the classic [8] [where I had myself first feasted], but felt that it might 
prove to be a bit much for them, and it was the Davenport I suggested, partly because 
it is such a wonderful book, but also because Davenport was the first great number–
theorist that I ever set eyes on…). 
 
I explained the meaning of the table. Those ‘–1’s’ and ‘+1’s’ related exactly to there 
being (for ‘–1’) L–approximations and (for ‘+1’:) there being no L–approximations. 
 
Those (x, y) = (1, 1), (2, 1), (2, 1), (5, 2), opposite the values 2, 3, 4, 5, 6, etc. were 
just the fundamental solutions of the obvious Fermat–Pell equations… 
 
That ‘1;2’ as the ‘continued fraction for ‘ 2’ meant: 
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2 1
1

2
1

2
1

2

= +
+

+
+O

 the ‘2’ get’s repeated  

   
etc. with convergents: 
 

 , , name1 1
1
2

1
1

2
1
2

1
1

2
1

2
1
2

, , ,+ +
+

+
+

+

KK  ly, 

 
1
1

3
2

7
5

17
12, , , , KK 

 
the L–and R–approximations to 2 !!!!! 
 
Did that always happen? No! If you calculate with the continued fraction 
for 3, namely ‘1;1,2’, which means: 
 

3 1
1

1
1

2
1

1
1

2

= +
+

+
+

+
O

 (the ‘1, 2’ gets repeated) 

etc. with convergents 
 

K,15
26,11

19,4
7,3

5,1
2,1

1  

 
Of course these couldn’t possible be L– and R–approximations to 3 since 3  hasn’t 
got any L–approximations, but these convergents do give rational approximations 
to 3 which alternate to the left and right of .3  That, 
e.g., 19

11 3,  which is less than 
p q2 23 1=

, instead of being a solution of the 
equation − , is a solution of the next best one, namely 
p q 1

1K K every other convergent starting with  does the same!2 23 2= − ! And,  
 
 
Also, every other convergent starting with 2

1 3,  is an R approximation to − K  
 
So, in their own time there were many, many things to investigate … . 
 
Did they notice anything just by looking at those continued fractions? Of course. It 
would be impossible not to see. It was noticed that every one of them had its repeated 
part (the part after the ‘;’) end in a number which is double the initial part (the part 
before the ‘;’). It was also noticed that when you “cover over the first and last parts, 
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the other bit is symmetrical” So, e.g., for 31  the “other bit is (1, 1, 3, 5, 3, 1, 1) and 
for 29  it is (2, 1, 1, 2). 
 
I asked if they noticed that sometimes the other bit had a central isolated terms (5 in 
the case of 31 29) and somtimes it didn’ t (as in the case of ). Could they see 
anything special about these occasions? Of course! The first happens when there are 
no L–approximations and the second when there are! I mentioned Euler and 
Lagrange… 
 
And what about 34,  of which we had earlier seen that we couldn’t argue that it has 
no L–approximations by a simple approach. Of course if we took for granted 
unproved results about continued fractions we could get a proof (the continued 
fraction expansion of 34  has an isolated central term), but could we get it any other 
way? Richard pointed out that it we took for granted the earlier discovered (but 
unproved) result that the fundamental L–approximation (if there were any L–
approximations) when composed with itself gives the fundamental R–approximation, 
then in the case of 34  we could argue that it has no L–approximations by supposing 
that it did, and by noting that when composed with itself it would come to 35

6 (see 
table) it would have to have denominator less than 6, and so would be either 1, 2, 3, 4 
or 5, and by just checking each of these in turn and seeing that none of them give rise 
of an L–approximation then there are none… 
 
I also just mentioned that every number has a ‘continued fraction expansion’, that 
rational numbers have terminating expansions, and irrational numbers have non–
terminating ones. Finite and infinite expansions if you will allow. But they should 
note that I hadn’t shown them how these expansions are arrived at. 
 
Now, if only I had asked Alaistair Wood to allow me just one more day… 
 
Thinking back to that time (it is now November 4th 1993 and I have been typing this 
report on and off since the end of July) I can scarcely believe that most of them took 
in as much as they did, and my admiration of them – especially the younger ones – 
knows no bounds. 
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I end with two tables 
 

1. Some solutions of Fermat–Pell equations 
 
2. Some standard continued fraction expansions 

 
 
 
 
 

d ε = least solution of x dy2 2 1− = −  δ = least solution of x dy2 2 1− =  
2 (1, 1) (3, 2) 
3 No solution (2, 1) 
5 (2, 1) (9, 4) 
6 No solution (5, 2) 
7 No solution (8, 3) 
8 No solution (3, 1) 

10 (3, 1) (19, 6) 
11 No solution (10, 3) 
12 No solution (7, 2) 
13 (18, 5) Find 
14 No solution (15, 4) 
15 No solution (4, 1) 
17 (4, 1) Find yourself 
18 No solution (17, 4) 
19 No solution (170, 39) 
20 No solution (9, 2) 
21 No solution (55, 12) 
22 No solution (197, 42) 
23 No solution (24, 5) 
24 No solution (5, 1) 
26 (5, 1) Find 
27 No solution (26, 5) 
28 No solution (127, 24) 
29 (70, 13) Find 
30 No solution (11, 2) 
31 No solution (1520, 273) 
32 No solution (17, 3) 
33 No solution (23, 4) 
34 No solution (35, 6) 
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35 No solution (6, 1) 
37 (6, 1) Find 
38 No solution (37, 6) 
39 No solution (25, 4) 
40 No solution (19, 3) 
43 No solution (3482, 531) 
46 No solution (24335, 3588) 
53 There is a solution (find yourself, 9100) 
61 There is a solution (find yourself, 226153480) 
62 No solution (find yourself, 8) 

109 There is a solution (find yourself, 15140424455100) 
110 No solution (21, 2) 
421 There is a solution Here y has 33 digits!!!! 
433 There is a solution Here y has 19 digits. 

 
 

N Continued fraction for N  x y x Ny2 2−  
2 1;2 1 1 –1 
3 1;1,2 2 1 +1 
5 2;4 2 1 –1 
6 2;2,4 5 2 +1 
7 2;1,1,1,4 8 3 +1 
8 2;1,4 3 1 +1 

10 3;6 3 1 –1 
11 3;3,6 10 3 +1 
12 3;2,6 7 2 +1 
13 3;1,1,1,1,6 18 5 –1 
14 3;1,2,1,6 15 4 +1 
15 3;1,6 4 1 +1 
17 4;8 4 1 –1 
18 4;4,8 17 4 +1 
19 4;2,1,3,1,2,8 170 39 +1 
20 4;2,8 9 2 +1 
21 4;1,1,2,1,1,8 55 12 +1 
22 4;1,2,4,2,1,8 197 42 +1 
23 4;1,3,1,8 24 5 +1 
24 4;1,8 5 1 +1 
26 5;10 5 1 –1 
27 5;5,10 26 5 +1 
28 5;3,2,3,10 127 24 +1 
29 5;2,1,1,2,10 70 13 –1 
30 5;2,10 11 2 +1 
31 5;1,1,3,5,3,1,1,10 1520 273 +1 
32 5;1,1,1,10 17 3 +1 
33 5;1,2,1,10 23 4 +1 
34 5;1,4,1,10 35 6 +1 
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35 5;1,10 6 1 +1 
37 6;12 6 1 –1 
38 6;6,12 37 6 +1 
39 6;4,12 25 4 +1 
40 6,3,12 19 3 +1 
41 6;2,2,12 32 5 –1 
42 6;2,12 13 2 +1 
43 6;1,1,3,1,5,1,3,1,1,12 3482 531 +1 
44 6;1,1,1,2,1,1,1,12 199 30 +1 
45 6;1,2,2,2,1,12 161 24 +1 
46 6; 1, 3, 1, 1, 2, 6, 2, 1, 1, 3, 1, 12 24335 3588 +1 
47 6; 1, 5, 1, 12 48 7 +1 
48 6; 1, 12 7 1 +1 
50 7; 14 7 1 –1 
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