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Ramsey numbers (formally defined shortly) are the outcome of work of the brilliant 
English mathematician-philosopher-economist Frank Ramsey1. In a seminal paper2 he 
proved the following result: 
 

Let G be an infinite simple3 graph, then G has an infinite sub-graph 
'every two of whose vertices are joinedG

G
4, or an infinite sub-graph 

'no two of whose vertices are joined5 
 
   Erdös6 and Szekeres formulated a finite version of Ramsey’s result, known as the 
Erdös-Szekeres theorem. In crude simplistic terms, their theorem asserts that every 
finite simple graph, having at least a certain number of vertices, must contain either a 
clique of a certain size or an independent set of a certain size. More precisely – and 
only by way of an introductory example – their theorem asserts that if one chooses 
two numbers 7 and 8 (say), then every simple graph G having at least a certain 
number of vertices (N, say) must contain either a clique of size 7, or an independent 
set of size 8. The smallest such ‘N’ for which that is true is known as the Ramsey 
number  Remarkably, – and all other Ramsey numbers like it – does 
exist (as you will shortly see), but nobody

).8,7(r )8,7(r
7 knows its exact value!!  

 
   Most people encounter Ramsey number (perhaps without knowing so) through the 
well-known six-people-at-a-party-problem: prove that for any six people there must 
be at least three of them, every two of whom know each other, or three of them, no 
two of whom know each other (and – as a pointer to the significance of the ‘6’ in 
relation to the ‘3’ and ‘3’ – construct an example of ‘5’ people with no 3-clique and 
no 3-independent set. Care should be taken if introducing this problem to non-
mathematicians, or, more precisely, acquaintances lacking the facility for abstract 
thought.) 
 
   In these notes I am summarizing work discussed at length in class and am resorting 
to graph theory language, with the obvious correspondences being understood: 
 

knowing ↔  joined 
not knowing ↔  not joined 

 
   (You ought to realise that resorting to such language is – for you and I – merely a 
convenience, and is not an integral part of what we are thinking about. To put it 
another way, should you ever try to introduce someone to Ramsey numbers, don’t 
start by rambling on about ‘graphs’, ‘vertices’, ‘edges’, ‘cliques’, ‘independent sets’, 
unless you wish to frighten everyone off.) 
                                                 
1 http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Ramsey.html  
2 On a Problem of Formal Logic, Proceeding of the London Mathematical Society, 30 (1930), 264-286. 
3 A graph is simple if every two of its vertices are either joined by a single edge, or are not joined at all. 
4 Forming what is knows as an infinite clique. 
5 Forming what is knows as an infinite independent set. 
6 http://www-groups.dcs.st-andrews.ac.uk/~history/Mathematicians/Erdos.html  
7 Recall Erdös – talking about Ramsey numbers in the video N is a Number – remarking (in 
wonderment) that not even the value of is known, though it is known to lie between 43 and 49. 

is known to lie between 216 and 1031; quite a range!! 
)5,5(r

)8,7(r
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Solution (expressed in graph theory language) to the six-people-at-a-party-
problem. Let G be a simple graph with 6 vertices, and let P be any one of those 
vertices. Since P is joined to 5 or 4 or 3 or 2 or 1or 0 of the other 5 vertices then 
 

1. P is joined to at least 3 of the other vertices, or 
2. P is not joined to at least 3 of the other vertices 

 
   In case (1), if some 2 of the other vertices and '(P ''P say) are joined, then every 
pair from and', PP ''P are joined: they form a 3-clique (the people they represent are 
‘mutually acquainted’); otherwise no 2 of the other 3 vertices '(  say) are 
joined: they form a 3-independent set (the people they represent are ‘mutually not 
acquainted’. 

'','',' PPP

 
   In case (2), if some 2 of the other vertices and '(P ''P say) are not joined then no 
pair from and', PP ''P are joined: they form a 3-independent set (the people they 
represent are ‘mutually not acquainted’); otherwise every 2 of the other 3 vertices 

'  say) are joined: they form a 3-clique (the people they represent are 
‘mutually acquainted’). 

''P,'','( PP

 
Definition. Let and suppose there is a number N such that every simple graph 
with N vertices has either a clique of size k or an independent set of size l, then the 
minimum such N is called

,2, ≥lk

8 the Ramsey number r  ).,( lk
 
Examples.  
 

1. A trivial one:  for all k  Why? It’s immediate: let G be any 
simple graph having exactly k vertices. If all G’s vertices are mutually joined 
then G automatically has a k-clique (itself!), while if not all of G’s vertices are 
mutually joined then some 2 of G’s vertices are not joined, and so G 
automatically has a 2-independent set.  

kkr =)2,( .2≥

It is obvious that one may construct a simple graph with fewer than k vertices, 
with no k-clique, and no 2-independent set. Thus .)2,( kkr =  

 
2. A trivial one: or all  Why? It’s immediate: let G be any 

simple graph having exactly l vertices. If some 2 of G’s vertices are mutually 
joined then G automatically has a 2-clique, while if no 2 of G’s vertices are 
joined then G automatically has an l-independent set (itself!) 

llr =),2(  f .2≥l

It is obvious that one may construct a simple graph with fewer than l vertices, 
with no 2-clique, and no l-independent set. Thus .),2( llr =  
 

3.  Why? Well we already know that is at most 6, and all we 
have to do to show that it is actually 6 is to make up an example of a simple 
graph, having 5 vertices, which has no 3-clique and no 3-independent set. The 
obvious example

.6)3,3( =r )3,3(r

9 is provided by the simple pentagon: 

                                                 
8 Actually I have only introduced what might be called the 2-variable Ramsey numbers. There are 
several-variables generalizations (in which multi-colouring plays a part). 
9 Such a graph is called a Ramsey graph. Not surprisingly they have lovely symmetry. 
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5 vertices 
no 3-clique 
no 3-ind. set

 
 
 
 
 
 
 

4. It should be obvious that ).,(),( klrlkr =  One should see that it is true. 
‘Knowing’ and ‘not-knowing’, being ‘joined’ and ‘not being joined’, being 
joined by ‘red’ (say, to represent ‘knowing’) or ‘blue’ (say, to represent ‘not 
knowing’), … , are, abstractly, the same. 

 
The Erdös-Szekeres theorem. Suppose ),1( lkr − and )1,( −lkr

).1
both exist (  

then also exists and 
),2, ≥lk

),( lkr ,(),( (),1 −+−≤ lkrlkr krl   
 
Proof. Let G be a simple graph with )1,(),1( −+− lkrlkr  vertices10, and let P be any 
one of those vertices. Then, either 
 
(a) P is joined to at least of the other vertices),1( lkr −

(

11. Thus either some of 
the vertices form a 

)1( −k
),1( lkr − )1−k -clique – in which case P, together with those 

vertices, form a k-clique – or some l of those )1−(k ),1( lkr − vertices form an l-
independent set. In either event G has a k-clique or an l-independent set. 
 
or 
 
(b) P is not joined to at least )1,( −lkr of the other vertices12. Then either some k of 
the vertices form a k-clique, or some ))1,( −lkr 1( −l  of those r vertices 
form an -independent set, in which case P, together with those vertices, 
form an l-independent set. In either event G has a k-clique or an l-independent set. 

)1,( −lk
)1( −l)1( −l

 
That completes the proof. 
 
Comment. One should recall from our discussions how absolutely critical it is to 
assert the correct minima in (a) and (b) (the ‘lift’ that I refer to in footnotes 11 and 
12 should be your guiding principle). For consider the first non-trivial examples after 

either or  If one tries to argue (e.g.) that ),3,3(r )3,4(r ).4,3(r
 

)13,4()3,14()3,4( −+−≤ rrr  
namely 

10)3,4( ≤r  
 

                                                 
10 In the 3=r and 3=l  case the ‘6’ was the sum of 332 ),( =r and .),( 323 =r  
11 The key idea now is to give a ‘lift’ – as it were – to that .)1( −k  
12 The key idea now is to give a ‘lift’ to that .)1( −l  
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then one could attempt to proceed by saying of a vertex P (in a 10 vertex simple 
graph) that it must be joined to 9 or 8 or … or 2 or 1 or 0 of the other 9 vertices. And 
one could then (correctly) assert that P must be joined to a minimum of 5 vertices, or 
not joined to a minimum of 5 vertices. However, to do so, would lead one nowhere 
(in terms of arguing to the desired conclusion that ).10)3,4( ≤r    
   Even if one were to (correctly) assert that P must be joined to a minimum of 4 
vertices, or not joined to a minimum of 6 vertices, that too would lead one nowhere 
(in terms of arguing to the desired conclusion that ).10)3,4( ≤r Of course it would 
enable one to argue that 10)4,3( ≤r (note the ‘switch’ of the ‘4’ and ‘3’). This is an 
important point to absorb, in terms of one’s personal understanding, and you should 
recall the (almost interminable!) struggle over that very point in class discussions.   
 
Note. If r and are both even, it can be argued that a little more is 
true, namely, 

),1( lk − )1,( −lkr
1() ).1,(),,( −+−< krl
3,4(

lkrlk
,9)

r
,9

 Thus it follows (e.g.) that 
and – in fact – )3,4( ≤r =r as is shown by exhibiting a ‘Ramsey graph’ 

having 8 vertices (namely one with no 4-clique and no 3-independent set). 
 
Which Ramsey numbers are known13? Very few non-trivial (meaning, of course, 
that k Ramsey numbers are known, despite huge efforts at determining them.  )3, ≥l

 
   However one can at least say something (using the Erdös-Szekeres theorem) about 
how big they are, at most. For example one may easily (though crudely) argue that 

is at most 70. How? Simply by making a succession of applications of the E-S 
theorem: 

)5,5(r

 
• .446)2,4()3,3()3,4( =+=+≤ rrr

.10)3,4( ≤
 

∴ r  
• .201010)3,4()4,3()4,4( =+≤+≤ rrr

.20)4,4( ≤
 

∴ r  
• [see separate calculation] )3,5()4,4()4,5( rrr +≤ .351520 =+≤  

]15510)2,5()3,4()3,5([ =+≤+≤ rrr
.35)4,5( ≤

 
∴ r  

• .703535)4,5()5,4()5,5( =+≤+≤ rrr
.70)5,5( ≤

 
∴ r  

 
Comment. Of course one may easily improve the last inequality by using actual 
known results for r and  ),3,4( )4,4(r :)3,5(r ,9)3,4( =r ,18)4,4( =r .14)3,5( =r  In 
fact, it happens to be known that .49)5,5(43 ≤≤ r  
 
For the record. At the time of writing, here are the only Ramsey numbers (the 2-
variable ones, that is, and with whose values are known: )3, ≥lk
 
 
 

                                                 
13 A good web reference is http://mathworld.wolfram.com/RamseyNumber.html  
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)3,3(r 6 
)4,3(r 9 
)5,3(r 14
)6,3(r 18
)7,3(r 23
)8,3(r 28
)9,3(r 36
)4,4(r 18
)5,4(r 25

 
   Of the more general (non-trivial) Ramsey numbers, only one is known!! It is 

whose value is known to be 17. The meaning of that is that if one chooses 
any 17 (or more) points and joins every two of them using  any one of 3 colours, red, 
green, and blue (say; by the way, that ‘3’(colours) is the number of variables – 
coordinates – and not the ‘3’ in that ‘3, 3, 3’), then, however one does it, there will 
always result either a red triangle, a green triangle, or a blue triangle (that’s what the 
‘3, 3, 3’ is about). Recall that an interpretation of being 6 is that if one 
chooses any 6 (or more) points, and joins every two of them using 2 colours, red and 
blue (say), then, however one does it, there will always result either a red triangle or 
a blue triangle.  

),3,3,3(r

)3,3(r

 
   You should recall, too, how that may returned into a game (which you could play 
with your friends, introduce to children, use your imagination…) for 2 people who 
have paper and two differently coloured crayons. On the paper mark 6 points, and 
then play. A ‘move’ is to join two points by an edge (it doesn’t have to be ‘straight’). 
Players move alternately, using their colour. Who ‘loses’? The first one to complete a 
‘triangle’ (a 3-clique, call it what you will). By Ramsey theory there must be a 
loser14. 
 
   It would, of course, be more interesting to play with 18 points!! There, the loser is 
the one who first completes a 4-clique: 
 

 
 

 
 
 
 
 
 
 
   Once again, by Ramsey theory, there must be a loser. 
 

__________________ 

                                                 
14 Must the player who moves first be the loser, providing the second player plays appropriately? 
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