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Paper Two

Time: Three hours

Answer six questions.

You may use a calculator, and all relevant calculations should be shown.
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(a)  Prove that
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      Write a Maple program which would enable you to determine all 
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is prime.
                  How could you determine how many such primes there are (apart from
                  counting them on screen)?

(b) Write Maple procedures which would enable you to:



      (i)
  find all perfect numbers up to any given bound


      (ii)
  determine how many deficient numbers there are between given bounds


      (iii)  compute terms of the sequence 
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(a) Define the function

the terms abundant, deficient and  perfect numbers, 


      and verify that 20, 15 and 28 are abundant, deficient and perfect respectively.


(b) Let a be a factor of n, and let 
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(c) Prove that 
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(d) Write a Maple procedure to calculate how many abundant numbers and 
      deficient numbers there are between any two given numbers.

(e) State and prove Euclid’s theorem on perfect numbers.
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(a) Let 

with 

 and 

 Prove that

(i) 
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(b) Let 
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(c) Solve the congruence 
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and hence find all integers y with
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(d) Prove from first principles that if

and
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(e) Find the least non-negative remainder that 
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 leaves on division by 7. 

4
(a) What output would you expect to see if you executed the following Maple 
     commands:
     (i)
  msolve(4*x + 1 = 0, 7);
     (ii)    msolve(6*x + 2 = 0, 4);
     (iii)   nops([msolve(x^2 + 3*x + 2 = 0, 5]);
     (iv)   nops([msolve(x^2 = 1, 8)]);


(b) Write a Maple program which would enable you to determine all those
                  congruences of the form 
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                  of which has at least two mutually incongruent solutions.


(c) Let  p be prime, and 
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(a) Prove that if n is composite then 
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(b) State the Lucas-Lehmer theorem, and use it to verify that

is prime.

(c) Use the Lucas-Lehmer theorem to verify that
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(a) What outputs would you expect to see if you executed the following Maple
      commands:

> with(numtheory):
      a := 96: b := 42: r := a mod b:
      S[1] := divisors(a) intersect divisors(b);
      S[2] := divisors(b) intersect divisors(r);

(b) Let 

with 
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     a and b, and
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(c) Use the Euclidean Algorithm to calculate 
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      verify your calculation.


(d) Let 

with
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and gcd(A, B) = 1.  Prove that
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(a) What outputs would you expect to see on executing the following Maple  
      commands:
      > a := 23: b:= 17:
          igcdex(a, b, ‘x’, ‘y’);
          x;
          y;
          a*x + b*y;

(b) State and prove the Fundamental Property of Prime Numbers.


(c) What output would you expect to see on executing the following Maple  
      command:

     > igcd(3^100, 10!);
     Explain why.
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(a) State Fermat’s ‘little’ theorem, and use it to verify that 15 is composite.



(b) Let  p be prime and let 

with 

 Prove that 


     


(c) Prove Fermat’s ‘little’ theorem. 
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