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Paper Three

Time: Three hours

Answer six questions.

You may use a calculator, and all relevant calculations should be shown.
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(a) Let 
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prove that the second smallest factor of n is prime.

(b) Prove that there are infinitely many prime numbers.

(c) State the Hardy-Littlewood conjecture concerning the number of primes in
     intervals
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 Why the
     requirement that ‘
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     Write Maple programs which would enable you to determine the number 
     of primes between 1 and 100, and between 50 and 149.

(d) What is meant by twin primes? Write down all twin primes below 30, and 
      write a Maple program which would enable you to determine the number 
      of twin primes below 1000.
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(a) Let 

with 

 and 

 Prove that

(i) 
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(b) Let 
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(c) Solve the congruence 
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and hence find all integers y with
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is divisible by 5.

(d) Prove from first principles that if 

and 
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(e) Find the least non-negative remainder that 
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 leaves on division by 7. 

3
(a) Construct the multiplication tables mod 4 and mod 5.

(b) Write a Maple program to solve (independent of ‘msolve’) the congruence  
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(c) What output would you expect to see if you executed the following Maple 
     commands:
     (i)
   msolve(5*x + 3 = 0, 7);

     (ii)
   msolve(6*x + 2 = 0, 4);

     (iii)
   msolve(x^2 = 1, 8);


(d) Let p be prime, and 
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prove that the congruence 
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has at most two mutually incongruent solutions, and
                 give an example of a non-trivial quadratic which has more than two mutually
                 incongruent solutions.
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(a) Prove that if n is composite then 
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(b) State the Lucas-Lehmer theorem, and use it to verify that

is prime.

(c) State JBC’s conjectured primality test for Mersenne numbers, and apply that
     test to the Mersenne number
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(d) Give appropriate Maple commands for using JBC’s test to the Mersenne
      number
[image: image24.wmf].

521

M


5
(a) What outputs would you expect to see if you executed the following Maple
 
      commands:

> with(numtheory):
    a := 96:
    b := 42:
    r := a mod b:
    A := divisors(a);
    B := divisors(b);
    R := divisors(r);
    S[1] := divisors(a) intersect divisors(b);
    S[2] := divisors(b) intersect divisors(r);

(b) Let 

with 
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 be the set of common divisors of 
     a and b, and
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(c) Use the Euclidean Algorithm to calculate 
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      verify your calculation.


(d) Let 

with 

 and gcd(A, B) = 1.  Prove that


6
(a) State and prove the Fundamental Property of Prime Numbers.




(b) Let p be prime; prove that 
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is the binomial coefficient.

(c) Write a Maple program which would enable you to determine all those r’s  
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(d) Let p be any prime number, and let 

such that 
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7
(a) Calculate the outputs from the following Maple commands:



     


> seq(4*k mod 7, k = 0..6);


     

 > seq(4*k mod 6, k = 0..5);


(b) Let  p be prime and let 

with 

 Prove that 


     


(c) State and prove Fermat’s ‘little’ theorem. Show how Fermat’s ‘little’ theorem
     may be used to verify that 21 is composite.
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(a) Find all solutions of the diophantine equation 
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(b) Prove that the congruence 
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has no solutions for any prime p 
     with
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(c) Prove that the diophantine equation 
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has no solutions.
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