COLÁISTE PHÁDRAIG, BAILE ÁTHA CLIATH

(Coláiste de chuid Ollscoil Chathair Bhaile Átha Cliath)
ST PATRICK’S COLLEGE, DUBLIN

(A College of Dublin City University)

_________________________
SUMMER EXAMINATIONS 2000

____________________
Second University Examination for the B.Ed. and B.A. Degree

____________________
Mathematics (Number Theory)

Third Paper 

Time: Three hours

Answer six questions.

You may use a calculator, but all relevant calculations should be shown.

1
(a) Define the terms prime and composite number. 

(b) Determine which of the numbers 119 and 107 are prime or composite. 
     (Show all relevant calculations.) 

(c) Show that 
[image: image1.wmf])

1

2

(

65

-

is composite.

(d) Let 

 Prove that the second smallest factor of n is prime.


(e) Prove that there are infinitely many prime numbers.


 

2
(a)  (i)  Let x and y be integers that leave remainder 2 on division 

             by 3. Prove that xy leaves remainder 1 on division by 3.


      (ii)  Calculate the least non-negative remainder that
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             leaves on division by 3.


      (iii) Show that 
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is divisible by 5.


      [In (i), (ii) and (iii) your solutions should not use congruence notation.]

(b) Write a Maple program for determining which of the numbers 
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      are prime, for n in the range 
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(c) Prove that 
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 is composite for infinitely many values of n, other 
     than the trivial 
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(d) Explain what is meant by a pseudoprime to the base 2, and show that 341 
      is a pseudoprime to the base 2.


3
(a) Define the function

the terms abundant, deficient and  perfect numbers, 


      and verify that 24, 21 and 28 are abundant, deficient and perfect respectively.


(b) Let a be a factor of n, and let 
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prove that ma is a factor of mn.


(c) Prove that 28m is abundant for all 
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(d) Write a Maple procedure to calculate how many abundant numbers and 
      deficient numbers there are between any two given numbers.

(e) State and prove Euclid’s theorem on perfect numbers.


4 (a) Let 

with 

 What is meant by a is congruent to b modulo m?

(b) Let 

with 

 and 

 Prove that
                  (i) 
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                  (ii) 
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(c) Let 

with 

 and 

 Prove
                 that


(d) Let 
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(e) Read the following Maple commands and outputs, and compute (with
      appropriate detail) the output from the final Maple command:

      > a := 71625389132876:
      > a mod 11;

7

                  > a^2 mod 11; 



5
(a) State the Lucas-Lehmer theorem, and write a basic Maple procedure ( putting

into effect the Lucas-Lehmer theorem ( which will determine, for a given odd
      prime p, whether

is prime or composite.

(b) Use the Lucas-Lehmer theorem to verify that

is prime. [Give two solutions,
     one with, and the other without congruence technique.]

(c) Use the Lucas-Lehmer theorem to verify that
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6
(a) Let 

with 

 Let 

 be the sets of common
                 divisors of a and b, and of b and r respectively. Prove that 


(b) State the Euclidean Algorithm and use it to calculate 
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(c)  Use the extended Euclidean Algorithm to express 
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as an integral

     linear combination of 1974 and 387, and verify your calculation.

(d)  Let 

with 

 and gcd(A, B) = 1.  Prove that




7
(a) Write a Maple procedure (with name ‘find_greatest’) which will accept 
                  as input integers A and B, and return as output their gcd.


(b)  What outputs would you expect to see if you successively executed the
 following Maple commands:

 > igcdex(17, 13, x, y);
 > x;
 > y;

(c)  State and prove the fundamental division property for primes.


(d)  What output (with explanation) would you expect to see if you executed 
 the following Maple command:

 > igcd(2^5321, 3^981);


8
(a) Let  p be prime and let 

with 

 Prove that 


     



(b) State and prove Fermat’s ‘little’ theorem.


(c) Show how Fermat’s ‘little’ theorem can be used to verify that 21 is composite.

____________________
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