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Answer six questions.

1
(a) 

Currently the largest known prime number is 

 Find the 

                       least non-negative remainder that it leaves on division by 7.


     

Show that 

is divisible by 7.


      [In 

and 

your solutions should not use congruence notation.]


(b) Let 

and let

 be the factors of n in ascending order.


      Prove that

is prime.


(c)  Prove that there are infinitely many prime numbers.

(d)  Write a Maple procedure which would enable you to calculate how many

      primes there are up to any given natural number, that end in 7 when expressed
      in the base 10.  What are the first four such primes?


(e) Find the first three primes of the form 

and write 


      a Maple procedure which would enable you to calculate how many such


      primes there are with k varying between any two integers m and n.

2
(a) Define the function

the terms abundant, deficient and  perfect numbers. 


      Verify that 24, 35 and 28 are abundant, deficient and perfect respectively.


(b) Write a Maple procedure to calculate how many abundant numbers there are


      between any two given numbers.


(c) Let a be any abundant number; prove that



      Deduce that there are infinitely many abundant numbers.


(d) Prove that 

 is deficient for all 



(e) State and prove Euclid’s theorem on perfect numbers.


3
(a) Let 

with

  What is meant by a is congruent to b modulo m?


(b) Let 

with 

 and 

   Prove that


     



 (c) Find the least non-negative remainder that 

 leaves on


      division by 7. [Your solution should use congruence notation.]


(d) State the Lucas-Lehmer theorem, and use it to verify that

is prime.


(e) Let m and n be natural numbers (not necessarily distinct), with n even.  


      Prove that

 is divisible by 5.

4
(a) Prove from first principles that if 

and


                 Show how the latter conclusion can also be made by using 



(b) Let 

with 

 prove that 



(c) Use the Euclidean Algorithm to calculate 

express


     

as an integral linear combination of 1233 and 528, and

 
      verify your calculation.


(d) Let 

with 

 and gcd(A, B) = 1.  Prove that


5
(a) Calculate the outputs from the following Maple commands:



     


> seq(4*k mod 7, k = 0..6);


     

> seq(4*k mod 6, k = 0..5);


(b) Let  p be prime and let 

with 

 Prove that 


     



(c) State and prove Fermat’s ‘little’ theorem.


(d) Show how Fermat’s ‘little’ theorem can be used to verify that 21 is composite.

6
(a) Claim: 

  


      What is wrong with the following proof of that claim?: 

                  “

ends in a 

and so

is impossible.”


      Give a valid proof of that claim.


(b) State and prove the  fundamental property of prime numbers.
 


(c) Let p be prime, and let

 Prove that



     Give an example of 

with

but 



 EMBED Equation.2  
and


7
(a) Calculate the outputs from the following Maple commands:


     


> msolve(x^2 + 1 = 0, 3);


     

> msolve(x^2 + 1 = 0, 5);

(b) Show from first principles that the congruence 

has no


      solutions, and deduce that

has no L-approximations.


(c) Let 

with 

 Prove that

has no L-approximations.


(d) Let p be any prime with 

 Prove that the congruence

 
     

has no solutions.


(e) Write down the first ten non-square natural numbers d such that

has no 


      L-approximations as a consequence of (c) or (d). [In each case you need 


      only briefly indicate the appropriate reason.]
8
(a) State and prove the unique factorisation theorem for the natural numbers.


(b) Let 

be the Hilbert system



      


Define the terms factor of n in

 prime in

and composite in



     

Write down the first five primes of

and the first two composites 

            of 

and their factors in



     

Give an example of an element of 

which does not have a unique


            factorisation as a product of primes of 



(c) Use the unique factorisation theorem to prove that

is irrational.

____________________
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