A special type of irrationality proof for square-roots


A special type of irrationality proof for square-roots

Aim. My aim in these notes is to show that certain, special types of numbers – 
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 – may be proved to be irrational by exploiting the fact that they have very good rational approximations; in short, I will show that because each of them has an infinite number of so-called R-approximations, (then) each of them is irrational.

A preliminary note on a certain kind of factorisation. In the work that follows there is an entirely elementary, but very important type of factorisation that is used time and time again, namely
:
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which can, of course, be verified by simply multiplying out the above right hand side:
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(the two middle terms cancel)

to give, after tidying up,
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You should see the above factorisation (one) as being merely a particular case of the well known school factorisation of the ‘difference of two squares’:
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in the sense that 
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A preliminary note on a certain kind of product. Also in the work that follows there is an entirely elementary, but very important type of product that is used time and time again, and it is this
:
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                      (two)

which can, of course, be verified by multiplying out both the left and right sides of (two):
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Thus the left and right hand sides of (two) are the same, and so (two) is established.

However I wouldn’t regard that as being an especially illuminating way of seeing that the important (two) is true, and I would say that a more insightful way to see that (two) is true is to factorise both  terms on the left hand side of (two), and then form their products to see that appropriate combinations of factors produce exactly what is needed:
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                                           (switching the two middle terms)

Multiplying out the first two, and the last two terms then gives:
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An important use of that factorisation. Recall that for all 
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automatically has an R-approximation,
 and a simple consequence of that is that
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has an infinite number of such approximations. For a given d, all R-approximations to
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are obtainable from the single R-approximation to 
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with least denominator (and accompanying numerator)–what one might call the fundamental approximation–by a simple method that had been known for many centuries, as illustrated by this example:

Example. Given that
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is the fundamental R-approximation to
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one may construct from it an infinite number of other R-approximations to
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Construction. Let 
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Giving        
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Finally                                   
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is an R-approximation to
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Important consequence. Every R-approximation to
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gives rise to another one, which in turn gives rise to another one, … ad infinitum. In fact, let 
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 be any R-approximation to 
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(and not necessarily the fundamental one), then one may construct from it an infinite number of other R-approximations to
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The details. Let 
[image: image50.wmf]q

p

be an R-approximation to
[image: image51.wmf],

d

then 
[image: image52.wmf],

1

2

2

=

-

dq

p

and thus

                                             
[image: image53.wmf]1

)

)(

(

=

+

-

d

q

p

d

q

p

                                               (A) 

But

                           
[image: image54.wmf]1

)

)(

(

=

+

-

d

b

a

d

b

a

                                               (B)

Then                 
[image: image55.wmf]1

)

)(

)(

)(

(

=

+

+

-

-

d

b

a

d

q

p

d

b

a

d

q

p

                                   (C)

Giving     
[image: image56.wmf]1

}

)

(

)

}{(

)

(

)

{(

=

+

-

+

+

-

+

d

q

p

q

p

d

q

p

q

p

a

b

bd

a

a

b

bd

a

                      (D)

Finally                                  
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And so 
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is an R-approximation to
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Aside. One should keep the matrix 
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in mind, for what is going on is that starting with an R-approximation 
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– which one may think of as being a 2-dimensional vector 
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– which one may think of as having come from pre-multiplying the vector 
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forming the new vector 
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which one sees produces the numerator and denominator of the new R-approximation. In fact, it’s the repeated multiplication of the initial vector by that matrix that forms all those other vectors, which correspond to the numerators and denominators. [End of Aside.]
Point. Every R-approximation to
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gives rise to another one, which in turn gives rise to another one, … ad infinitum. In the case of
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· The (first
) found R-approximation
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enables one to calculate a 2nd R-approximation to
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which in turn leads to a 3rd R-approximation to
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which in turn leads to a 4th R-approximation to
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You must be able to carry out the detail for other simple examples like 
[image: image80.wmf],

3

,

2

… .

One final, simple, but important detail before the irrationality proof(s).  Let 
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where d and b are the positive denominators of 
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 respectively. (In other words, there is a certain minimum difference between two unequal rational numbers, which depends only on the product of their positive denominators. Comment. Of course this result is rather pathetic if the two rational numbers are far apart, like for example
· if 
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when in fact the difference between them is actually
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 but it also happens to be the best possible in the sense that the actual minimum can happen as seen from examples like
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if 
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Proof of (lower). Let 
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Summary. If the rational number 
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is greater than the rational number 
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 Also, strict inequality may or may not occur, meaning sometimes ‘
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Now we are ready to present an irrationality proof based on the above body of ideas.

Theorem (example). 
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which, multiplying throughout by 
[image: image125.wmf],

2

nq

gives 
[image: image126.wmf],

n

q

<

 for all denominators ‘q’ of the infinitely many R-approximations to
[image: image127.wmf].

7

 But that last inequality is clearly impossible because ‘n’ is fixed.

Final comment. The crux is that final inequality ‘
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Now, that inequality would have been satisfied (true) for several of the smaller q’s; the smaller q’s are, in fact, 3, 48, 765, 12192, 194307, 3096720, 49353213, 786554688, 12535521795, 199781794032, … , 13251875306657183598333 (the 19th of the q’s for
[image: image132.wmf]),

7

but would then be false for 211198501853215619739168 (the 20th of the q’s for
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 That’s the whole point about there being an infinite number of R-approximations.







� In which I have used a fixed ‘3’, but you should see that ‘3’ may be replaced by general ‘d’.


� Again I have used a fixed ‘3’, but you should see that ‘3’ may be replaced by general ‘d’.


� This is a very famous theorem of the outstanding French mathematician Joseph Louis Lagrange (1736-1813)


� Whose determinant – you may notice – is 1: the determinant is � EMBED Equation.3  ���It’s a ‘unimodular’ matrix.


� The ‘fundamental’ one. With� EMBED Equation.3  ���we are lucky, in that the first tested ‘q’ produces an R-approximation. For� EMBED Equation.3  ���the first ‘q’ is 2, for� EMBED Equation.3  ���it is 4, for� EMBED Equation.3  ���it is 2, for� EMBED Equation.3  ���it is 3, …  


But, for example, for� EMBED Equation.3  ���it is 273 (whereas for the ones on either side, as it were –� EMBED Equation.3  ���and� EMBED Equation.3  ��� – the first q’s are 2 and 3), for� EMBED Equation.3  ���it is 3,588, for� EMBED Equation.3  ���it is 226,153,480, for� EMBED Equation.3  ���it is 15,149,424,455,100, and they are as nothing compared to …
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